代写ORBS7260/MFFM7040 Applied Time Series / Times Series Analysis Assignment 2 Semester One, 2024/25代写

Department of Mathematics

Assignment 2

Subject Title

:

Applied Time Series / Times Series Analysis

Subject Code

:

ORBS7260/MFFM7040

Session

:

Semester One, 2024/25

Submission Due

:

28h Oct 2024 at 10:00 pm

Answer ALL FOUR questions in the provided answer booklet.

Question 1 (20 marks)

Assume  {at } is white noise process, which is a sequence of identical independent distributed

random variables with zero mean and constant variance σa(2) .

(a) Evaluate the mean, variance and covariance function and hence determine the for the stationarity for each of the following processes.

(i) Xt = μ + 2tat

(ii) Wt =▽Yt = Yt - Yt-1    where Yt = t + at

(b) Consider a stationary moving average process, Xt = 3 + at + θat -1    where   -∞ < θ< ∞ .

(i)    Evaluate the mean, variance and the covariance function.

(ii)   Hence, find the first and second order autocorrelation coefficient for the process.

Question 2 (20 marks)

Consider a stationary time series Zt which follows an ARMA(1, 1) process, Zt = φ0 + φ1Zt -1 + at + 0.1at -1 ,

where at is a white noise process with a variance of σa(2) . Find the mean, variance and the

autocorrelation function (ACF) of an ARMA(1,1) process in terms of σa(2) ,φ0  and φ1   .

Question 3 (40 marks)

Consider the ARMA(2,3) process,

(1-0.1B)(1-0.8B)Zt = 9+(1-0.1B)(1+0.6B)(1+0.3B)at ,

where at is a white noise process with unit variance. It is known that the above process is over- estimated.

(a)    Suggest a parismony model ARMA(1,2) for the above process.

(b)   Hence, determine the stationarity and invertibility of the process.

(c)   Find the mean, the variance and the first two lags of the autocovariance function of the process.

(d)   Find the first three lags of the autocorrelation function (ACF) for the process.

(e)   Find the first two lags of the partial autocorrelation coefficients.

Question 4 (20 marks)

Consider a time series with sample mean and sample variance are 1.4 and 4, respectively. The values of the first two lags for sample autocorrelation function (ACF) coefficients are 0.4 and 0.1 respectively. It is known that the time series Zt follows an ARMA(1,1) process,

Zt = φ0  + φ1Zt -1  + θ1at -1  + at ,

where at is a white noise process with an unknown constant variance of σa(2) .

Assume the ARMA(1,1) process is a stationary and invertible process.

By using the values of the  sample autocorrelation coefficients, estimate the corresponding

unknown parametersφ0 ,φ1 ,θ1 andσa(2) for the ARMA(1,1).




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图