代写BUSI4528 QUANTITATIVE RESEARCH METHODS FOR FINANCE AND INVESTMENT AUTUMN SEMESTER 2022-2023代写Web开发

BUSI4528-E1

A LEVEL 4 MODULE, AUTUMN SEMESTER 2022-2023

QUANTITATIVE RESEARCH METHODS FOR FINANCE AND INVESTMENT

1.  a) We use data on rice production from a sample of 88 Philippine rice farmers in 1994 to estimate the production function. Variables are defined as below:

lnprod: logarithm of tons of freshly threshed rice. lnarea: logarithm of hectares planted.

lnlabor: logarithm of person-days of hired and family labor. lnfert: logarithm of kilograms of fertilizer.

We obtained the following estimation results:

(i)          Write down the regression model and interpret the meaning and significance of each coefficient.   [20 marks]

(ii)          What could be a potential problem of this estimation?   [10 marks]

(iii)         Explain how to test the explanatory power of the regression.   [10 marks]

b) Explain what time series data, cross-sectional data, and panel data are.   [10 marks]

c)  Describe two indicators that are suitable to evaluate the goodness-of-fit of binary

choice models (e.g., Probit, and Logit regression models). Explain why these are to be preferred to the conventional R-squared index.     [20 marks]

d) Consider the following time series model:

yt  =  β0  + β1xt  + β2xt−1 + yyt−1  + εt

It is suspected that the model suffers from serial correlation in the error term of the form.

εt  = Pεt−1  + ut

where ut   is an identically independently distributed error term and t denotes the t-th   time period. Describe in detail a test for the presence of serial correlation in the above form. of the model.    [30 marks]

2.  a) Answer the following questions in relation to the linear regression model :

yi  = β1  + β2xi2  + β3xi3  + εi

(i)          Which assumptions are needed to make the ordinary least squares (OLS) estimator, b, a BLUE estimator of the parameters β?    [20 marks]

(ii)          Explain how a 95% confidence interval for β2   can be constructed. What

additional assumptions are needed?     [10 marks]

(iii)         Suppose that the R2   from the regression xi2  = α2  + α3xi3  + vi   is 0.75, what will

happen if you try to estimate the model yi   = β1  + β2xi2  + β3xi3  + εi?    [20 marks]

b)   What are the main limitations of the Linear Probability Model (LPM) as compared to the Probit and Logit regression models?   [20 marks]

c)  Describe how graphs of time series can be used in a preliminary analysis to detect the presence of a unit root.   [10 marks]

d) Outline the Dickey-Fuller test for the null hypothesis (H0) of the presence of a unit root in an autoregressive time series model against the alternative hypothesis (HA) that the autoregressive time series model is stationary around a zero mean.   [20 marks]

3. a) Answer the following questions about the concept of heteroscedasticity:

(i)           Describe how heteroscedasticity can be detected. [25 marks]

(ii)          What are the consequences of heteroscedasticity in linear regression [15 marks]

(iii)         What are the possible solutions to address this issue.    [10 marks]

b) Consider the model

yt  = α + β0xt  + et

where the error term is AR(1): et   = pet−1  + vt , |p| < 1, vt are i.i.d. with mean zero and variance σv(2) , and t denotes the t-th time period. Show how the above model can be rewritten into a new model that has an error term uncorrelated over time.   [20 marks]

c)  Explain the Engle-Granger test for cointegration and write down the steps involved in the test.   [30 marks]

4. a) We estimate two regressions describing the relationship between the cost per student and related factors at four-year colleges in the U.S., covering the period 1987 to 2011, where tc is the logarithm total cost per student, ftestu is number of full time equivalent students, ftgrad is number of full-time graduate students, tt is number of tenure track  faculty per 100 students, ga is number of graduate assistants per 100 students, and cf is the number of contract faculty per 100 students, which are hired on a year to year basis, staffsize is number of staff and benstaff is benefit package to staff. Below are  the estimation results in our empirical analysis:

Estimation I:

Estimation II:

What are the differences between the above two sets of results in terms of estimation methods? How to determine which estimation method to use?        [20 marks]

b) Discuss how the difference-in-difference (DID) estimator (specify the DID regression model) might be used to test for a potential treatment effect of a policy reform. Use  graphs where necessary.     [30 marks]

c)  Explain the setup of the Logit regression model. What interpretation can be given to its regression coefficients?   [20 marks]

d) Explain how to use the Durbin-Watson (DW) statistics to test for autocorrelation of the first order, AR(1), of the error terms in static models of time series data. Discuss the limitations of the DW test for detecting serial correlation in the error terms.  [20 marks]

e) When dealing with non-stationary time series, what is meant by ‘spurious regression’?   [10 marks]



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图