代写BUSI4528 QUANTITATIVE RESEARCH METHODS FOR FINANCE AND INVESTMENT AUTUMN SEMESTER 2023-2024帮做Pytho

BUSI4528-E1

A LEVEL 4 MODULE, AUTUMN SEMESTER 2023-2024

QUANTITATIVE RESEARCH METHODS FOR FINANCE AND INVESTMENT

1.  (a) We used data from one of the OECD countries for the sample period from 1971 to 2007, to examine the predictability of consumption growth. Variables are defined as below:

csumptn : growth in real per capita private consumption.

hours: growth in per capita hours worked.

gov: growth in real per capita government consumption.

r: the real interest rate

inc: growth in per capita real disposable labor income.

We obtained the following estimation results:

Write down the regression model, and interpret the meaning and significance of each coefficient. Are the results consistent with economic intuition?     [25 marks]

(b) Explain what the Central Limit Theorem is.           [10 marks]

(c) Explain what time series data, cross-sectional data, and panel data are.              [15 marks]

(d)The Linear Probability Model (LPM) is a commonly used tool in finance and economics.

(i) Using standard mathematical notation, outline the LPM and its main features. Discuss its interpretation and assumptions.        [20 marks]

(ii) What are some of the key limitations of the LPM? In your discussion, consider both the statistical and real-world financial implications.         [15 marks]

(e) Define 'spurious regression' and explain why it presents a problem in the context of time series analysis.      [15 marks]

2.  (a) Consider the simple linear regression model, y  =  β1  + β2  x  +  e.

(i) Discuss the assumptions under which the ordinary least squares estimators are the best linear unbiased estimators of β1   and β2 .            [20 marks]

(ii) Explain how one can test the hypothesis that β2   =  1.           [15 marks]

(b) Explain the difference between population and sample and why we need to do sampling. [15 marks]

(c) Serial correlation often presents a challenge when estimating linear regression models such as Autoregressive Distributed Lag (ARDL) models.

(i) Define serial correlation and explain why it can be problematic in the context of ARDL models.      [15 marks]

(ii) What methods can be used to detect serial correlation in the context of ARDL regression models, and how can it be corrected?          [20 marks]

(d) Explain the use of time series graphs in preliminary analyses for detecting a unit root in time-series data.       [15 marks]

3.  (a) Consider an experiment on whether adding one tutorial class after school improves student performance in the final exam. Suppose that we choose one class to attend the additional class, denoted as TREATi=1, and another class not to attend the class, denoted as TREATi=0. Let AFTER t=1 for the two semesters after the introducing the new tutorial class, and AFTER t=0 for the two semesters before the new schedule. Let Finmark i,t   be the  average  final  exam  marks  in  each  group  in  each  semester.  We  obtained  the estimation below:

What is the treatment effect in the above equation? Is the estimated treatment effect significant at the 5% level?   [15 marks]

(b)Provide an explanation of Type I and Type II errors in hypothesis testing and suggest some strategies for minimizing these errors.     [15 marks]

(c) Provide a detailed comparison of pooled OLS and fixed effects methods as they apply to panel data estimation, highlighting their differences and similarities.           [20 marks]

(d)The Engle-Granger test is a common approach to testing for cointegration in time-series data.

(i) Explain the basic premise of the Engle-Granger test.          [15 marks]

(ii) How is the test conducted and what are the underlying assumptions?        [20 marks]

(iii)Discuss the interpretation of the test results and the implications of these results in the context of financial data analysis.        [15 marks]

4.  (a) Define the term multicollinearity and explain how it can be detected. Also, list the consequences of multicollinearity and explain how they can be mitigated.         [50 marks]

(b)The Logit regression model is a powerful tool for predicting binary dependent variables.

(i) Explain the formulation of the Logit regression model and discuss how it can be used to predict binary outcomes.  [10 marks]

(ii) What are the key assumptions of the model, and how can its results be interpreted?   [10 marks]

(iii) Discuss any potential limitations or challenges in using the Logit regression model in financial data analysis.   [10 marks]

(c) Generalized Least Squares (GLS) estimation is a method that can effectively address the issue of serial correlation in regression models.

(i) Explain how GLS estimation works and how it helps to mitigate serial

correlation. In particular, discuss the role of the Cochrane-Orcutt method in this context.   [10 marks]

(ii) What are the key assumptions and potential limitations of using GLS estimation to deal with serial correlation?   [10 marks]





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图