代写ISE529 Predictive Analytics 2024 Fall Homework 4代做Statistics统计

ISE529 Predictive Analytics

2024 Fall

Homework 4

Due by: Nov. 7, 2024, 11:59 PM

1. (25 points)

Consider the use of a logistic regression model to predict the probability of default using income and balance on the Default data set. Compute estimates for the standard errors of the income and balance logistic regression coefficients in two different ways: (1) using the bootstrap method, and (2) using the standard function sm.GLM() or sm.Logit() from statsmodels library. Set a random seed = 0 when generate random indices for bootstrap.

(a) Using sm.GLM() or sm.Logit() function, determine the estimated standard errors for the coefficients associated with income and balance in a multiple logistic regression model

(b) Write a function, boot_fn(), that takes as input the Default data set as well as an indexof the observations, and that outputs the coefficient estimates for income and balance in the multiple logistic regression model.

(c) Use your boot_fn() function to bootstrap 1000 samples to estimate the standard errors of the logistic regression coefficients for income and balance.

(d) Comment on the estimated standard errors obtained using the bootstrap and using sm.GLM() or sm.Logit() function.

2. (25 points)

Compute the LOOCV test error estimate for a simple logistic regression model on the Weekly data set. Write a for” loop from i = 1 ton, where n is the number of observations in the data set, that performs each of the following steps:

i. Fit a logistic regression model with sm.GLM() function using all but the ith observation to predict Direction using Lag1 and Lag2.

ii. Compute the probability of the market moving up with predict() function for the ith observation.

iii. Use the probability for the ith observation to predict whether the market moves up. Pr(Direction = "Up" | Lag1, Lag2) > 0.5.

iv. Determine the LOOCV test error estimate with the formula

where Erri  = I yi   y(ˆ)i ) .

3. (25 points)

Consider the Carseats data set. The response Sales is a quantitative variable. Use random forests to analyze this data. Bootstrap 500 samples with random seed = 1. What training and test MSE do you obtain? Use the “feature_importances_” values to determine which variables are most important.

4. (25 points)

Use the Caravan data set to perform. the following tasks:

(a) Create a training set consisting of the first 1,000 observations, and a test set consisting of the remaining observations.

(b) Fit a boosting model to the training set with Purchase as the response and the other variables as predictors. Use 1,000 trees, and a learning rate of 0.01, max splits of 4. Which predictors appear to be the most important? Show the list of importance.

(c) Use the boosting model to predict the response on the test data. Predict that a person will make a purchase if the estimated probability of purchase is greater than 20 %. Show a confusion matrix.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图