代写COMP3161/9164 24T3 Assignment 2 Type Inference for Polymorphic MinHS代写留学生Python语言

COMP3161/9164 24T3 Assignment 2

Type Inference for Polymorphic MinHS

Marks :        17.5% of the overall mark

Due date: Monday 18th November 2024, 12:00 PM Sydney time

Overview

In this assignment you will implement type inference for MinHS. The language used in this assignment differs from the language of Assignment  1 in two respects:  it has a polymorphic type system, and it has aggregate data structures.

The assignment requires you to:

•  (100% marks) Implement the type inference  algorithm discussed in the lectures for polymorphic MinHS with sum and product data types;

•  (5% bonus) adjust the type inference pass to include various simple syntax extensions from Assign- ment 1;

•  (5% bonus) adjust the type inference pass to allow optional type annotations provided by the user;

Each of these parts is explained in detail below.

The MinHS parser and evaluator are provided for you.  You do not have to change anything in any module other than TyInfer .hs (even for the bonus parts).

Your type inference pass should return the inferred type scheme of the top-level binding, main.

Your assignment will only be tested on correct programs, and will be judged correct if it produces a correct type for main up to α-renaming of type variables, and reordering of quantifiers.

Submission

Submit your (modified) TyInfer .hs using the CSE give system, by typing the command

give  cs3161  TyInfer  TyInfer .hs

or by using the CSE give web interface.

1 Task 1

Task 1 is worth 100% of the marks of this assignment. You are to implement type inference for MinHS with aggregate data structures. The following cases must be handled:

the MinHS language of the first task of assignment 1 (without n-ary functions, or lists);

product types: the 0-tuple (aka the Unit type) and 2-tuples;

sum types;

•  polymorphic functions

These cases are explained in detail below. The abstract syntax defining these syntactic entities is in Syntax .hs. You should not need to modify the abstract syntax definition in any way.

Your implementation is to follow the definition of inference rules provided with this assignment.  In particular, you must implement a variables-in-contexts version of Hindley-Milner type inference  [1] by tracking definitions (in addition to declarations) for type variables in the context.

Additional material can be found in the lecture notes on polymorphism, and reference materials [2,3]. The variables-in-contexts approach you will need to implement is outlined in this assignment specification, along with inference rules in Figures 1,2 and 3.

2 Bonus Tasks

These tasks are all optional, and are worth a total of an additional 10%.  Marks above 100% are converted to exam marks, at an exchange rate of 1 to 0.15—for example, a mark of 105% yields 0.75 bonus marks for the exam.

2.1 Bonus Task 1: Simple Syntax Extensions

This bonus task is worth an additional 5%.  In this task, you should implement type inference for multiple bindings in the one let expression, with the same semantics as the extension task for Assignment 1.

You will need to develop the requisite extensions to the type inference algorithm yourself, but the exten- sions are very similar to the existing rules.

2.2 Bonus Task 2: User-provided type signatures

This bonus task is worth an additional 5%.  In this task you are to extend the type inference pass to accept programs containing some type information. You need to combine this with the results of your type inference pass to produce the final type for each declaration.  That is, you need to be able to infer correct types for programs like:

main  =  let  f  ::   (Int  ->  Int)

=  recfun  g  x  =  x;

in  f  2;

You must ensure that the type signatures provided are not overly general.  For example, the following pro- gram should be a type error, as the user-provided signature is too general:

main  ::   (forall  ’a .  ’a)  =  3;

You may assume for simplicity that the user-provided types have distinct type variable names for all bound / free type variables. Your solution should, for example, support programs such as:

main  ::  forall  ’a .  ’a  ->  ’a  +  Int  =  recfun  m  y  =

let  g  ::  forall  ’b .  ’b  ->  ’a  +  ’b  =  recfun  f  x  =  Inl  y;

in  g  1

where the type variable  ’a is in scope for the expression bound to main and appears in the user-provided type annotating g. All occurrences of ’a within the bound expression reference the same type variable.

3 Algebraic Data Types

This section covers the extensions to the language of the first assignment. In all other respects (except lists) the language remains the same, so you can consult the reference material from the first assignment for further details on the language.

3.1 Product Types

We only have 2-tuples in MinHS, and the Unit type, which could be viewed as a 0-tuple.

3.2 Sum Types

Sum types in MinHS follow the presentation in the lectures.

3.3 Polymorphism

The extensions to allow polymorphism are relatively minor.  Three new type forms have been introduced: the FlexVar  t form, the RigidVar  t form, and the Forall  t  e form.   FlexVar  t represents a unification variable introduced during type inference.   RigidVar  t represents  a fixed type variable introduced by a forall-quantifier.  Consult Section 4 for more details on the notational conventions used in this specification and how they relate to the Haskell code.  We distinguish between type schemes and other types:

Type inference should return a correctly typed top-level binding for main.  For example, consider the fol- lowing code fragment before and after type inference:

main  =

let  f  =  recfun  g  x  =  x;

in  if  f  True

then  f   (Inl  1)

else  f   (Inr   ());

main   ::   (Int  +  1)  =

let  f  =  recfun  g  x  =  x;

in  if  f  True

then  f   (Inl  1)

else  f   (Inr   ());

4 Notational Conventions

In this document, we will use a number of conventions and conveniences to streamline the presentation detailed in Table 1.

Table 1: Notations and Conventions in this Specification vs. Haskell code for Assignment

Type variable names are ranged over by lowercase greek letters.  We distinguish between flexible and rigid type variables by superscripting such names with F and R, respectively.

Declarations and definitions for flexible type variables appear in typing contexts, see Section 5.1 for the full grammar of contexts.

Substitution for type variables occurring in types is explained in Section 6. Since there are two kinds of type variables:  flexible ones introduced during type inference, and rigid ones bound by ∀-quantifiers, we have two kinds of substitution operation depending on which type variables we wish to replace.  These are called substFlex and substRigid in the Subst .hs Haskell module, substituting for flexible and rigid type variables, respectively.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图