代做MET AD 616 Enterprise Risk Analytics帮做R语言

MET AD 616 Enterprise Risk Analytics

MET AD 616, Enterprise Risk Analytics, offers a quantitative approach to estimating and managing risk across various industries. The major risk categories of enterprise risk management—financial risk, strategic risk, and operational risk—will be discussed, and risk analytics approaches for each of these risks will be covered. Students will learn how to use interlinked data-inputs, analytics models, business statistics, optimization techniques, simulation, and decision-support tools. This course extensively utilizes statistical concepts along with an in-depth treatment of risk using R programming language. Specifically, the course will focus on covering Input Modeling techniques with uncertainty, Stochastic Optimization, Decision Trees with uncertainty, and Bayesian Inference in determining causality and input processes. The course also covers introductory level Stochastic Programming concepts associated with 2-stage stochastic decision problems. Finally, the course has a final team project where each team will take up a real business case with data across industries ranging from Private Equity, Healthcare, Venture Capital, and Supply Chain; solve the case as a team; and make a presentation on the decisions made, taking uncertainty and risk into consideration. [4 cr.]

Prerequisites

Prerequisite Courses

    MET AD 571 Business Analytics Foundations

Preparatory Labs

    AD 100

    ADR 100 Introduction to R for Business

    Other self-paced labs are recommended but not required for AD 616

Technical Notes

The table of contents expands and contracts (+/- sign) and may conceal some pages. To avoid missing content pages, you are advised to use the next/previous page icons in the top right corner of the learning modules.

This course requires you to access files such as word documents, PDFs, and/or media files. These files may open in your browser or be downloaded as files, depending on the settings of your browser.

Syllabus

This is a single, concatenated file, suitable for printing or saving as a PDF for offline viewing. Please note that some animations or images may not work.

Course Description

This module is also available as a concatenated page, suitable for printing or saving as a PDF for offline viewing.

Learning Objectives

During this course you will be able to:

    learn to use interlinked data-inputs

    learn about different analytics models

    model decisions

    learn about optimization techniques

    extensively work in R to include Uncertainty in Decision making

    build your own decision support tools

By successfully completing this course you will be able to:

    use interlinked data-inputs

    discuss different analytics models

    explain business statistics

    use optimization techniques over uncertainty

    recognize different simulations

    build your own quantitative repertoire







热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图