代做AD680 Global Supply Chains Problem Set #2: Inventory Aggregation代做Prolog

AD680 Global Supply Chains

Problem Set #2: Inventory Aggregation

Consider the information and data presented in the textbook case study “Should Packing Be Postponed to the DC [Distribution Center]?” (Page 356 in the textbook), that concerns inventory management at Penang Electronics, where orders areplaced weekly, and the lead time for receiving orders is 9 weeks. Pay close attention to the details of the case study, but ignore the list of questions posed on Page 357.

For this assignment, do the following:

Compare the two alternatives under consideration for final labeling and packaging:

1.    At the production faculty in Malaysia before being shipped to the DC (the current approach) and

2.    At the DC in St. Louis (i.e., postponing labeling and packaging until just before shipment).

The comparison should consider the savings in annual holding cost with aggregation compared to the increased production costs of aggregation.  When determining if aggregation is warranted, note that how inventory is managed does not need to be consistent across the three products (computers, printers, scanners).  That is, aggregation maybe worthwhile for only one or two of the three products, and this approach can be implemented.

When analyzing the two alternatives, use a target product fill rate of 99%. Assume that the demand across the four customers is independent but that demand variation is perfectly correlated across weeks.

The assessment of this work will be based on the accuracy and clarity of your spreadsheet.

E-mail one Excel file, using a filename Lastname_3.

TIPS:

Approach 1: At the production faculty in Malaysia before being shipped to the DC (the current approach) We are given that

Computers

Printers

Scanners

Forecast Wk

Sigma Wk

Forecast Wk

Sigma Wk

Forecast Wk

Sigma Wk

Target

1,000

700

2,000

1,000

4,000

1,000

BBY

700

600

1,500

800

4,500

900

OM

800

600

1,200

600

2,000

700

Staples

500

400

900

500

1,400

500

Let us first work on computers. We would like to find out the safety stock (ss) for the computers for each customer. Let us focus on Target.

The formula for ss is

ss = kσT+L

k is the constant that we get from f(k) which is given by

f (k) = cvT+L/1− fr

where cvt+L  isthe coefficient of variation during the RLTD period and σT+L is the standard deviation during the RLTD period. We are given in the problem that the fill-rate (fr) is equal to 0.99.

cvt+L = σT+L/  μT+L   so let us first find the μT+L  and σT+L   for computers.

We are given that T = 1 week and L =9 weeks so T+L = 10 weeks. μT+L (Target)= 1,000*10=10,000

How do we find σT+L ? It is important to realize that σT+L  isthe standard deviation over 10 weeks. And we are given the information that demand variation is perfectly correlated across weeks. Therefore, we  use the formula:

σT+L = σ1 +σ2  + . . . +σT+L

σT+L (Target) = 700*10 = 7,000. Then,

cvt+L = σT+L / μT+L  = 7,000/10,000= 0.7

f(k) = (1-0.99)/0.7 = 0.014 k = 1.808.

ss =(1.808)*(7,000) = 12,656.

Now, you find the ssvalues for BBY, OM, and Staples for computers (using the above approach) and then you compute the totalss for computers.

Totalss for computers = ss(Target)+ ss(BBY) + ss(OM) + ss(Staples)

Holding cost for computers under Approach 1 = (Totalss for computers)* (cost per computer) * (30%).

Approach 2: At the DC in St. Louis (i.e., postponing labeling and packaging until just before shipment).

In this approach, we will not consider each customer (i.e., Target, BBY, OM, Staples) individually.

Instead, we will be looking at the aggregate demand for each product. Again, let us just focus on the computers.

What is the aggregate demand for computers? It is the summation of demand for Target, BBY, OM, and Staples. It is 1,000+700+800+500 = 3,000 = μT.

What is the aggregate standard deviation for computers across the customers. Here we will be using the information given to us that Assume that the demand across the four customers is

independent” .  We will be using the following formula.

2             2            2                        2

σT = σ1  + σ2  + + σk

σ!(2)  = 7002  + 6002  + 6002  + 4002   =  1,370,000

Then, σT =1,170.

Now, we need to find the mean and the standard deviation over the RLTD period.

μT+L = 3,000*10=30,000

How do we find σT+L ? It is important to realize that σT+L  isthe standard deviation over 10 weeks. And we are given the information that demand variation is perfectly correlated across weeks. Therefore, we  use the formula:

σT+L = σ1 +σ2  + . . . +σT+L

σT+L = 1,170*10 = 11,700.

cvt+L = σT+L / μT+L  = 11,700/30,000= 0.39

f(k) = (1-0.99)/0.39 = 0.026

k=1,552.

ss =(1.552)*(11,700) = 18,158.

Holding Cost  = ss * (Cost per computer)*(30%).

Now, there is an extra cost associated with aggregating. In particular, we are given that per unit, we pay $2 more if we aggregate. How much more do we pay?

$2 * (aggregated forecast/week for computers) * 52 weeks/year

We multiply by 52 because there are 52 weeks in a year and the holding cost is a yearly cost – we would like to add holding cost to the extra cost we calculate here so we want them to have similar units.

Total cost = Holding cost + Extra cost

The improvement in the cost with aggregating for computers would be found by Total cost (Approach 2)  - Holding cost (Approach 1)

For computers: the improvement will be $6.910,200.

For printers: the improvement will be $1,908,350.

For scanners: the improvement will be -$451,840.

So, it does not make sense to aggregate for scanners.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图