代做ECO3121 - Fall 2024 Problem Set 2帮做Python语言程序

Problem Set 2

ECO3121 - Fall 2024

Due 3 PM, November 2, 2024

No late submission is allowed

Please combine your answer, Stata code and requested output in one pdf file and upload it to Blackboard

Question 1

Download from the Blackboard site and load into Stata the Indonesia education and earning data inpresdata.dta. The main data we use is the 1995 intercensal survey of Indonesia (SUPAS), which is a nationally representative large cross section of men born between 1950 and 1972 from the 1995 intercensal survey of Indonesia.  It is the main dataset used in the influential paper “Schooling and Labor Market Consequences of School Construction in Indonesia:  Evidence from an Unusual Policy Experiment” by Esther Duflo.

Since this will be a multiple linear regression model, we’ll be estimating regressions of the form. (model 1):

wageij  = α + β1 educationi + β2 ninj  + μi

First, let’s analyze the efect of years of education of each individual i and province-level (indexed by j) number of inpres school per children on monthly wages.

1. Run the regression and report the estimated coefflcients, and their standard errors, and comment on the statistical significance of the regression estimates and R2 .

2. Let’s assume the specification on question 1 is the true model, and you misspecified the model as model 2:

wage ^ij = ˜α + β˜ 1education

Comparing the estimates from these two models (specifications), What would be the bias and in which direction of the misspecified model? Be as precise as possible to explain the comparison.

3. Based on the estimates and comparison from these two models, what’s the direction of cov(educationi , ninj ) from theoretical judgment? Based on the dataset itself, what’s the direction of cov(educationi , ninj )?

Are these two results consistent with each other?

4. A professor thinks about adding an additional variable “en71” to model 1, and asks that does the enrollment rate in 1971 of each province also change the wage outcome? Run the regressions recommended by the professor. Write down the new model (specification) as model 3.

5. Formally write down the corresponding hypothesis testing (t-test) to verify the professor’s ques- tion step by step (5 steps). And please make your conclusion to the professor’s question.

6. Comparing model 3 and model 2, the professor wants to test the joint significance of variables “nin” and “en71” . What kind of test shall we use? Please ofer the detailed procedure for the test step by step and conclude.

Question 2: Linear and non-linear probability model

Now a professor is thinking about introducing dummy variables in the regression to better understand the contribution of education on wage.

First, we introduce a dummy variable to the dependent variable by dividing wages into high and low levels. Specifically we define high wage = 1 if wage >= 192000 and is not a missing value, and high wage = 0 if wage < 192000.

1. Please run a regression of Y :  high wage  on Xi :  years of education (yedu) and Zj :  number of inpres school per children (nin) using 1) linear probability model, and 2) Probit model, respectively.

Summarize these estimates in a table with 3 columns (the format of the table can refer to the table on page 24 of the “week 8-2” slide, but the information in the last row of that table does not need to be displayed), and only interpret the coefficient of yedu in the linear probability model.

2. The professor uses the following Probit model,

P (Yi  = 1jXi , Zj ) = Φ(β0 + β1 Xi + β2 Zj )

where i denotes an individual.  Discuss 2-3 potential drawbacks of using a linear probability model instead of a non-linear model when Y is a binary variable.

3. Use the Probit model and the results from the table you ofer in question (1), and calculate the change in probability when Z = 3 and X  increases from 8 to 12.  (Note: you can keep Φ(·) in your answers without solving for it.)

4. Use a graph of cumulative standard normal distribution to demonstrate such change in probability in question (3), and label the direction of the change.  (Note: no need to spend time drawing a very neat gure. The information conveyed by this gure is more important.)

Question 3: Dummy variable as the independent variable

The professor is also interested in studying whether high-education groups of people have higher wages than low-education groups of people.  Therefore, the professor divides education level into high-level (high level = 1) if years of education are >= 9 and there is no missing value in years of education. And the variable of high level = 0 if years of education are < 9.

1. Run a regression of monthly wages on high level. Demonstrate the coefficient of high level and interpret the estimate.

2. The professor wants to study whether urban as the birthplace (urban = 1 in the data) can afect the slope of high level on wage by introducing the interaction term.

1) Please write down the model (specification) and report your estimates. (Don’t forget to include urban as an independent variable in your model.)

2) Conduct your hypothesis testing using p-value, and conclude.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图