代写FINS5513 Markowitz and SIM-Based Portfolio Optimisation调试R语言

TERM PROJECT FINS5513

Markowitz and SIM-Based Portfolio Optimisation

TERM PROJECT SUMMARY

The Term Project has 2 parts:

Part A – Portfolio construction using Markowitz optimisation (Excel)

Part B – Portfolio construction using SIM-based optimisation (Excel)

Each of the parts are described below.  Please attempt ALL parts.

AFTER READING THESE INSTRUCTIONS, PLEASE WATCH THE “TERM PROJECT DEMONSTRATION” ON MOODLE.

PART A: 5 STOCK MARKOWITZ OPTIMISATION

A1 Allocated Stocks

You are evaluating a portfolio of 5 U.S. equities drawn from the S&P500. The five allocated stocks are randomly drawn and are unique to you. Each student will have a different combination of stocks. Your allocated stocks will be emailed to you from bankfinexams@unsw.edu.au. You will receive this email shortly, and an announcement will be made when it has been sent. Once the email is sent, please check your junk file and all other inboxes. If you cannot find it, please email robert.bishop@unsw.edu.au.

The allocated stocks used in the Term Project demonstration are an EXAMPLE only (because your allocated stocks will be different).    The five stocks used in the Term Project demonstration have the FactSet identifiers (i) APPL-US, (ii) DIS-US, (iii) GS-US, (iv) JNJ-US, and (v) V-US.

A2 Data Download and Validation

For the period from January 2014 through December 2018, download the monthly returns for each stock in your portfolio from FactSet (60 observations). All returns should be inclusive of dividends

- in the FactSet dropdown box "Total Return" select "% Return."

We will first verify that you have downloaded the correct data for your assigned companies and that you are able to correctly compute some basic statistics.

Given that you can multiply monthly average returns by 12 to annualise them, what is the average annualised return for...

QA1. ...Stock 1?

QA2. ...Stock 2?

QA3. ...Stock 3?

QA4. ...Stock 4?

QA5. ...Stock 5?

Given that you can multiply monthly standard deviations by √ 12 to annualise them, what is the annualised standard deviation of monthly returns for...

QA6. ... Stock 1?

QA7. ... Stock 2?

QA8. ... Stock 3?

QA9. ... Stock 4?

QA10...Stock 5?

Before you continue, please check whether you have downloaded the data correctly from FactSet by opening the Excel file “FactSet Download Check” on Moodle. Search for your zID (use the Excel Home menu, go to the magnifying glass, select Find, and then enter your zID). Check that the answers for QA1-10 that you have derived above are equal with the answers provided in the Excel file for QA1-10 to 5 decimal places (there may be small differences beyond 5 decimal places).  If they do not, do not proceed as it means you have downloaded the data incorrectly from Factset. Go back and try downloading the data again, following these instructions exactly. If your answers for QA1-10 do match those in the Excel file (to 5 decimal places), enter them in the Quiz QA1-10, and proceed with the following questions.

Given that you can multiply the covariances of monthly returns by 12 to annualise them, what is the annualised covariance of monthly returns between...

QA11. ... Stock 1 and Stock 2 (Example: APPL-US and DIS-US)?

QA12. ... Stock 3 and Stock 4 (Example: GS-US and JNJ-US)?

QA13. ... Stock 1 and Stock 5 (Example: APPL-US and V-US)?

A3 Efficient Frontier

Now we will proceed to portfolio optimisation.

We will firstly derive the Minimum Variance Frontier (MVF) using the Solver tool in Excel.

MVF: For a portfolio constructed from your assigned securities, find the portfolio weightings that would minimise its annualised standard deviation/variance of returns at each expected annual portfolio return level between 0% and 30% (in increments of 10%).

What is the minimum attainable standard deviation of annual returns for...

QA14. ... an expected return level of 0%?

QA15. ... an expected return level of 10%?

QA16. ... an expected return level of 20%?

QA17. ... an expected return level of 30%?

Next, we will  derive the portfolio weightings  for the Global  Minimum  Variance  Portfolio (GMVP) – the portfolio weightings that result in the portfolio having the lowest possible variance (without any constraint on expected portfolio return) – by using Solver.

GMVP: What is the GMVP portfolio weight in ...

QA18. ... Stock 1

QA19. ... Stock 3

QA20. ... Stock 5

Compute the annualised expected return and annualised standard deviation of the GMVP. What is its ...

QA21. ... annualised expected return?

QA22. ... annualised standard deviation?

Now, we can derive the Efficient Frontier by discarding any portfolio that is inefficient (that is, any portfolio on the MVF that has a return lower than the GMVP)

A4     Capital Allocation Line and the Optimal Risky Portfolio P*

Use a risk-free rate of 3.00% APR (i.e., fixed at 0.25% monthly) for all parts of this task.

The Optimal Risky Portfolio (P+) is the point on the Efficient Frontier that has the highest possible Sharpe Ratio. We will derive the portfolio weightings for P* by using Solver.

P*: What is the portfolio weight in P+ of ...

QA23. ... Stock 1

QA24. ... Stock 3

QA25. ... Stock 5

Compute the annualised expected return and annualised standard deviation for P*. What is its ...

QA26. ... annualised expected return?

QA27. ... annualised standard deviation?

Now, we can derive the Capital Allocation Line (CAL) by joining the risk-free rate (the y- intercept) with P* in a linear line.  (Note: this should be tangent to your efficient frontier – if it is not, then extend your efficient frontier target level expected returns beyond 30% until you have at least one return level greater than the P* expected return and they should now be tangent to each other).

A5 Optimal Complete Portfolio

Assume the optimal allocation to risky assets y for an investor is given by:

y = E (rp) rf

A × σp(2)

The Optimal Complete Portfolio (C*) is the portfolio combination of risky assets (composed of P*) and risk-free assets that provides an investor the highest possible utility, given their level of risk aversion. We can determine an investor’s risk aversion if we have information on C*.

QA28. What is the risk aversion coefficient, A, for Investor I, who invests on the CAL and whose optimal allocation to risky assets (y∗ ) is 100%?

QA29. What is investor I’s Optimal Complete Portfolio Sharpe Ratio?

C*: Investor J’s Optimal Complete Portfolio has an annualised standard deviation of 10% and is located on the CAL.  What is Investor J’s …

QA30. … optimal allocation to risky assets y∗ ?

QA31. … risk aversion coefficient, A

QA32. … Optimal Complete Portfolio annualised expected return?

QA33. … Optimal Complete Portfolio annualised Sharpe ratio?

QA34. … Optimal Complete Portfolio utility score - using the conventional utility function:

Uc = E(rc*) - 2/1Aσp(2)

GRAPHSPARTA - OPTIONAL QUESTIONS

You  are  not required to complete these graphs but they are an excellent learning opportunity

In your Excel spreadsheet:

a)   Plot the Minimum Variance Frontier (MVF) for all target annualised expected returns between 0% and 30% in increments of 10%, and clearly label it.

b)   Plot the Efficient Frontier and clearly label it.

c)   Plot the Capital Allocation Line (CAL), showing where it intersects the y-axis and the efficient frontier and clearly label it.

d)   Plot investor J ’s indifference curve at the utility score derived in QA34, with the Capital Allocation Line and efficient frontier overlaid, and showing C* as the point of tangency between the indifference curve and the CAL.

PART B: 10 STOCK MARKOWITZ AND SIM-BASED OPTIMISATION

B1 Allocated Stocks - 10 Stock Portfolio

Now, please add the following 5 stocks to your portfolio: (vi) HD-US, (vii) IBM-US, (viii) JPM-US, (ix) WMT-US (x) CVX-US.  You should now have 10 stocks in your portfolio with no duplicates.

B2     Data Download and Basic Portfolio Statistics

For the period from January 2014 through December 2018, download from FactSet the monthly returns (inclusive of dividends) for each of the 5 new stocks that you have been assigned above (60 observations). Combine this new data with the data you have downloaded for your previously allocated 5 stocks so that you have a spreadsheet covering 10 stocks.

For the period from January 2014 through December 2018, download from FactSet the monthly returns for the S&P 500 Index (FactSet identifier: SP50) (60 observations).

All returns should be total returns inclusive of dividends - in the FactSet dropdown box "Total Return" select "% Return.". For the S&P500 "Total Return", select "% Return (Gross, Unhedged)"

Compute the annualised average return, standard deviation and variance for each stock.

Compute the annualised average return, standard deviation and variance for the S&P 500.

B3 Markowitz Portfolio Optimisation 10 Stocks

B3.1 Global Minimum Variance Portfolio Under Markowitz

Derive the 10-stock sample variance-covariance matrix using any method demonstrated in Part A.

For the portfolio without any position-size constraints (long/short portfolio), identify the Global Minimum Variance Portfolio (GMVP). What is its ...

QB1. ... annualised expected return?

QB2. ... annualised standard deviation?

For the portfolio with the constraint that no stock can be shorted (long only portfolio), identify the Global Minimum Variance Portfolio (GMVP). What is its ...

QB3. ... annualised expected return?

QB4. ... annualised standard deviation?

B3.2     Optimal Risky Portfolio P* Under Markowitz

For  the  portfolio without  any  position-size  constraints  (long/short portfolio),  identify  the Optimal Risky Portfolio (P*). What is its ...

QB5. ... annualised expected return?

QB6. ... annualised standard deviation?

For the portfolio with the constraint that no stock can be shorted (long only portfolio), identify the Optimal Risky Portfolio (P*). What is its ...

QB7. ... annualised expected return?

QB8. ... annualised standard deviation?

B4     Single Index Model (SIM) Portfolio Optimisation 10 Stocks

B4.1 Derive Excess Returns

For each stock in your portfolio, calculate monthly excess return: Rit  = rit − rf  where rit   is the return on stock i for month t, and rf  is the risk-free rate. (Make sure you use the fixed monthly risk- free rate given above). Compute the annualised average excess return for each stock in your portfolio over the sample period.

For the S&P 500 index, calculate monthly excess return: R Mt   = rMt rf  where,rMt  is the return on the S&P 500 for month t. Compute the annualised average excess return for the S&P 500 over the sample period.

B4.2 Single Index Model (SIM) Regression

Estimate the SIM beta βi, for each stock in your portfolio using the regression equation:

Rit  = α i  + βiR Mt  + εit

QB9. What was the highest beta out of your 10 stocks?

QB10. What was the lowest beta out of your 10 stocks (including negative values)?

B4.3 SIM Variance-Covariance Matrix

Calculate the variance-covariance matrix for your 10-stock portfolio using these SIM estimates.

For the matrix diagonal, simply use the individual variances for each stock σi2  derived in B2.

For the off-diagonal covariances, assume no residual covariance between stocks (the standard assumption of the SIM), and apply the following equation:

Cov(ri , rj) = βi βj σM(2)                for all i, j, .n  = 10 stocks

B4.4     Global Minimum Variance Portfolio and Optimal Risky Portfolio Under SIM

Use the (already annualised) sample variance-covariance matrix  derived in B4.3  for all  SIM optimisations.

For the portfolio without any position-size constraints (long/short portfolio), identify the Global Minimum Variance Portfolio (GMVP) under the SIM. What is its ...

QB11. ... annualised expected return?

QB12. ... annualised standard deviation?

For the portfolio with the constraint that no stock can be shorted (long only portfolio), identify the Global Minimum Variance Portfolio (GMVP) under the SIM. What is its ...

QB13. ... annualised expected return?

QB14. ... annualised standard deviation?

For  the  portfolio without  any  position-size  constraints  (long/short portfolio),  identify  the Optimal Risky Portfolio (P*) under the SIM. What is its ...

QB15. ... annualised expected return?

QB16. ... annualised standard deviation?

For the portfolio with the constraint that no stock can be shorted (long only portfolio), identify the Optimal Risky Portfolio (P*) under the SIM. What is its ...

QB17. ... annualised expected return?

QB18. ... annualised standard deviation?

GRAPHS PART B - OPTIONAL QUESTIONS

You  are  not required to complete these graphs but they are an excellent learning opportunity

In your Excel spreadsheet:

e)   For the 10-stock Markowitz portfolio  without any position-size constraints only, derive the Minimum Variance Frontier (MVF) for all target annualised expected returns between 0% and 30% in increments of 10%, and clearly label it.

f) For the 10-stock Markowitz portfolio without any position-size constraints only, plot the Efficient Frontier and clearly label it.

g)   For the 10-stock Markowitz portfolio without any position-size constraints only, plot the Capital Allocation Line (CAL) showing where it intersects they-axis and the efficient frontier, and clearly label it.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图