代写CMT117 Knowledge Representation 2024-25帮做Python语言

Assessment Proforma 2024-25

Key Information

Module Code

CMT117

Module Title

Knowledge Representation

Assessment Title

Problem Sheet 1

Assessment Number

1 out of 2

Assessment Weighting

50%

Assessment Limits

The Assessment Calendar can be found under ‘Assessment & Feedback’ in the COMSC-   ORG-SCHOOL organisation on Learning Central. This is the single point of truth for (a) the hand out date and time, (b) the hand in date and time, and (c) the feedback return date for  all assessments.

Learning Outcomes

The learning outcomes for this assessment are as follows:

1.  Formalize simple problems with a given knowledge representation approach

2.  Discuss theoretical properties of different knowledge representation formalisms

3.  Explain the basic principles underlying common knowledge representation approaches.

Submission Instructions

The coversheet can be found under ‘Assessment & Feedback’ in the COMSC-ORG- SCHOOL organisation on Learning Central.

You are required to answer 2 multi-part questions on “Propositional Logic” and

“Nonmonotonic Reasoning and Belief Revision”, as described in detail in the attachment. The answers should be submitted as a single pdf file.

All files should be submitted via Learning Central.  The submission page can be found under ‘Assessment & Feedback’ in the CMT117 module on Learning Central.  Your submission should consist of two files:

Description

Type

Name

Coversheet

Compulsory

One PDF (.pdf) file

[student

number]_Coversheet.pdf

Answers to all question parts

Compulsory

One PDF (.pdf) file

[student number].pdf

Any deviation from the submission instructions above (including the number and types of files submitted) may result in a reduction in marks for the assessment.

If you are unable to submit your work due to technical difficulties, please submit your work via e-mail to comsc-submissions@cardiff.ac.ukand notify the module leader.

Staff reserve the right to invite students to a meeting to discuss coursework submissions

Assessment Description

The 2 questions are described in detail in the attachment.

Assessment Criteria

Credit will be awarded against the following criteria.

[Correctness] Do the answers correctly address the requirements of each task?

[Clarity] Are explanations and summaries easily understandable?

[Understanding of concepts] Do the answers show an understanding of basic concepts?

Indication of level of attainment:

High

Distinction

80%+

At this level, students consistently and accurately apply theorems and definitions from the module notes. There is full understanding of

concepts, and answers are justified with detailed examples where

appropriate. The assessment is essentially without errors. Usage of KR formalisms to model situations is exemplary. All justifications are clear, well-argued, and convincing. The student not only meets but exceeds the minimum requirements of each question.

Distinction

70-79%

Students at this level apply theorems and definitions from the module notes effectively and accurately, with only minor inconsistencies. Good understanding of main concepts is demonstrated. Most answers are well justified, and appropriate use of examples is displayed where

necessary. There may be a minor error or two, but the overall quality is high. Usage of KR formalisms is competent and thoughtful most of the time. A distinction level student provides convincing justifications for

most answers and meets all minimum question requirements.

Merit

60-69%

Merit level students aptly apply theorems and definitions, though there may be some inaccuracies. A decent understanding of key concepts is shown. Examples might not always be utilized effectively in

justifications. There could also be some inaccuracies, but they do not significantly impair the overall quality. Usage of KR formalisms is

overall good but can show some incorrect choices. Such students meet the minimum requirements of most questions.

Pass

50-59%

Students at this level demonstrate a basic understanding of module concepts and can apply theorems and definitions in a mostly correct manner. Justifications may lack depth or use of examples where

appropriate. Errors could surface regularly but are minor, and there might be misguided usage of KR formalisms. The minimum

requirements of each question are mostly met.

Marginal Fail

40-49%

Marginal fails signify a poor understanding of key concepts and

incorrect or inconsistent application of theorems and definitions.

Justifications are often missing or lack appropriate use of examples. Errors are common, and KR formalisms are used incorrectly or

inappropriately. Minimum question requirements can be unmet frequently.

Fail

0-39%

At this level, there is a fundamental misunderstanding or absence of knowledge of module material. Failure in correctly and consistently applying theorems and definitions, and inappropriate or no use of

examples is observed. The student makes many errors and

demonstrates minimal or flawed usage of KR formalisms. Minimum requirements of most or all questions are not met.

Help and Support

Questions about the assessment can be asked on the Discussion Board on the module’s Learning Central pages, or via email to the module team.

Feedback

Feedback on your coursework will address the assessment criteria. Feedback and marks will be returned via Learning Central. This will be supplemented with oral feedback via individual meetings. Feedback from this assignment will be useful for Problem Sheet 2 of this module, as well as for CMT215 Automated Reasoning.

ANSWER ALL PARTS OF BOTH QUESTIONS. Each question is worth 25 marks and the number of marks available for each question part is indicated.

Question 1: Propositional Logic

(a) Write down exactly one propositional contradiction such that the only propositional variable appearing in the sentence isp, and the only log- ical connectives are → and ¬ .  (Note your answer may use p and each of → and ¬ as many times as you like).       [1]

(b) Let L  =  {p,q} and let v be the valuation such that v(p)  = T and v(q) = F.  For each of the following sentences in SL, state whether v satisfies that sentence.

(i)  ¬p ∧ q                                   [1]

(ii)  (p ∨ q) ↔ (p ∨ ¬q)                                        [1]

(c)  Consider the following scenario.

Three  boxes  are presented to  you.  At  least one  of the  boxes

contains gold.  Each box has a clue written on it.  These  are:

Box 1:    “If there is gold in this box, then there is gold in Box 2”

Box 2:    “There is no gold in Box 1” Box 3:    “There is no gold in Box 2”

Only one clue is false.  The  other two are true.

(i)  Using an appropriate choice of propositional variables, write down a single sentence in propositional logic that represents all you know from the information contained in this scenario. You must explain how you arrive at your answer at each step.                                [6]

(ii)  Is it a logical consequence of the information given in the scenario that there is gold in Box 3? Justify your answer.               [5]

(d) Let L = {s,t}.  Determine whether there exists a derivation of s → t from s → (t ∨ s) using the rules of Natural Deduction.  Justify your answer.                                                    [5]

(e) Assume L = {p,q, r}.  Consider the sentence A = ¬p → (q ∨ r).

(i)  Establish whether there exists a Horn sentence in SL that is log- ically equivalent to A.  Justify your answer, stating in full any statement or result from the lecture notes that you rely on in your justification.                     [4]

(ii) Use your answer to part (i) to briefly illustrate either exactly one advantage or exactly one disadvantage of using Horn logic rather than propositional logic as a logic for knowledge representation. [2]

Question 2: Nonmonotonic Reasoning & Belief Revision

(a)  Consider the Monotonicity rule for inference relations  |∼ :

A |∼ C A ∧ B |∼ C

Assume L = {p,q}. Show that Monotonicity fails for some rational con- sequence relation, and some specific choice of sentences A,B, C ∈ SL. State clearly any Theorem from the module’s lecture notes that you rely on in your answer.       [5]

(b)  Consider the following rule for inference relations |∼ , which we call CC:

X ∧ Y |∼ Z X |∼ Y                (CC )

X |∼ Z

Show how  CC can be derived from the set of KLM rules.  You may freely use in your derivation any other rule that was already shown to follow from the KLM rules in the lecture notes (though this must be clearly stated).                          [4]

(c) Assume L = {p,q} and consider the following ranked model R = (V,⪯) with V = {TT,TF,FT, FF} and ⪯ given in tabular form. as follows:

TF

FF TT

FT

(each valuation is represented as a pair denoting the truth-values of p,q respectively, and the further to the left a valuation appears in the above table, the more normal it is deemed to be.)  State whether the following conditionals hold in R. Justify your answers in each case.

(i) q |∼R p                                  [3]

(ii) p → q |∼R  ¬q                                   [3]

(d)  Switching now to belief revision, let L =  {p,q, r}  and let  ⪯  be the following plausibility order over the set of valuations:

TTT FTT FTF

TFF TFT

FFT

TTF FFF

(each valuation is represented as triple denoting the truth-values of p,q,r respectively, and the further to the left a valuation appears in the above table, the more plausible it is deemed to be.)

(i) What is the belief set K(⪯) associated to this order? (Your answer should be of the form. Cn(A) for some suitable sentence A).     [1]

Recall that ∗N  denotes natural revision and ∗L  denotes lexicographic revision.

(ii) Write down q(*)Λ(L)(rp)  in tabular form. and give the belief set

K(q(*)Λ(L)(rp)) associated to this new order (again in the form. Cn(A)

for some suitable sentence A).                                                       [4]

(iii)  Give some sentence B such that ¬q K((B(*L))q(*)

first revise ⪯  by B using lexicographic revision, and then revise the result by q ↔ r using natural revision then we end up believing ¬q. Justify your answer.                                                              [5]




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图