代写Computational Optimization Assignment #3代做Python语言

Computational Optimization

Assignment #3

Problem 1

The following table specifies the weights and values per unit of five different products held in storage.  The quantity of each product is unlimited.

Product (i)     Weight per unit (wi) Value per unit (vi)

1

7

9

2

5

4

3

4

3

4

3

2

5

1

0.5

A plane with a weight capacity of 13 is to be used, for one trip only, to transport the products. We would like to know how many units of each product should be loaded onto the plane to maximize the value of goods shipped.

Use dynamic programming to find the optimal solution. Please provide the following details (a) describe clearly the stages, (b) states, (c) allowable decisions at each state in each stage, etc. Finally, please state what the optimal quantity of each product to be loaded to the plane is.

Problem 2

Suppose (by some miracle) that you have access to a particular company's stock prices over the next 10 days, and they are as follows:

Day Price

1

7

2

3

3

2

4

8

5

11

6

9

7

5

8

10

9

6

10

4

It is the start of Day 1, and you do not own any shares. At the start of each day, you can either purchase one share or sell any shares that you have on hand (as many as you like, but not more than you own), or do nothing. Suppose that shares are worthless after Day 10 (the company goes bankrupt on Day 11). Your goal is to maximize profit over the 10-day period.

Please solve the above problem by formulating a dynamic program following the steps below

a)  What are the states and stages associated with this problem?

b)  What is the set of feasible actions associated with stage n and state s? How much is gained/lost by taking each action?

(Hint: It may be easier to let your action be the number of shares you have at the end of day n, rather than the number of shares you buy or sell on that day)

c)   How can the optimization function be interpreted here? That is, given a stage n and a state s, what is fn* (s)?

d)  Formulate the above problem as a dynamic program and solve it using GAMS/Python. Write the optimal sequence of actions below, and the profit that these yields.

Problem 3

[Note: This is a bonus problem and not required – those students may work on it to earn an extra credit of at most 2 points that will be used to offset any possible loss of points from other problems, which are worth 10 points in total.]

A government space agency is conducting a research project on an engineering problem that must be solved before people can safely fly to Mars. Three independent research teams are currently trying three different approaches to solve this problem.

The probability that team 1 will fail to solve this problem is 0.40, the probability that team 2 will fail is 0.60, and the probability that team 3 will fail is 0.80. We say that the project fails if all three teams fail. So, currently, the probability that the project fails is 0.40 . 0.60 . 0.80 = 0.192.

The space agency has decided to assign a total of three new scientists to the project. The three new scientists can be assigned together or separately to any of the teams. The following table gives the new probabilities of failure if 0, 1, 2, or 3 new scientists are assigned to each team. Our task is to use a dynamic programming approach to decide how many new scientists to assign to each team such that the probability of project failure is minimized.

Number of new scientists                                                           Probability of failure

                                                          Team 1                                  Team 2                       Team 3

0                                                          0.40                                      0.60                            0.80

1                                                          0.20                                      0.40                            0.50

2                                                          0.15                                      0.20                            0.30

3                                                          0.10                                      0.17                            0.25

a)   What are the stages?

b)  What state information is needed to capture the essential information at the end of each stage?

c)   What are the options possible for each state in each stage?

d)  Give an word-description of the optimization function f *  to be computed for each state at each stage.

e)   Give a recurrence relation that gives a mathematical expression to compute the function f *

f)   Introduce the boundary conditions that allow you to start the computation of values off * .

g)  To what state and stage does f *  correspond to the optimal value of the overall problem?

h)  Carry out the computation by hand or using GAMS/Python to determine first the optimal value, and then the optimal solution for the data above. (If by hand, show some of your computation.  If using software, include all your source code and output.)



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图