代做ME 588, Dynamics and Vibration Homework 1代做Java程序

ME 588, Dynamics and Vibration

Homework 1

Distributed: 9/25/2024, Due: 10/11/2024

1. Consider a spring-mass system mounted on a spinning disk as shown in Fig. 1. The disk spins at constant angular velocity ω. Moreover, the disk has a diametrical slot, along which a block with mass m slides without friction. The spring connecting the mass and the disk center is a stiffening spring with a negligible free length. Therefore, the spring force Fs is given by Fs = kr(1 + αr2), where k and α are positive constants and r is the radial position of the block. The motion occurs in a horizontal plane, where gravity has no effects. Also, the disk is large enough so that the block will not fall out of the slot. Answer the following questions.

(a) Use the Newtonian approach (i.e., drawing free-body diagrams and applying Newton’s second law) to derive the equations of motion governing the radial position r.

(b) Determine all equilibrium positions.

(c) Derive the linearized equation of motion around each equilibrium position. Describe the condition so that the linearized equation of motion will give a stable and bounded response.

Figure 1: A spring-mass system in a spinning disk, version 1

Figure 2: Two point masses connected by a massless link

2. A rigid, massless rod of length r connects two particles of mass m1 and m2. Moreover, the two particles are sliding without friction on a circular arc of radius r in the gravity field; see Fig. 2. Let θ be the counterclockwise angular position from the vertical downward direction to the radial direction of particle m2. Moreover, let g be the gravitational acceleration. Use Newtonian mechanics to answer the following questions.

(a) Draw a free-body diagram of the two particles m1 and m2.

(b) Apply Newton’s second law to derive the equations of motion of the two particles m1 and m2. Eliminate constraint force(s) from your equations of motion to obtain a nonlinear, differential equation governing only the variable θ(t).

(c) Determine equilibrium positions θ0 of the system in terms of m1 and m2.

(d) Consider a special case m1 = m2 = m and focus on the equilibrium position with 0 < θ0 < 90◦. Derive linearized equations of motion around the equilibrium position.

3. Quiz Problem. Consider a two-block system moving in the gravity field shown in Fig. 3. The two blocks have the same mass m and are connected via a rigid, massless rod of length l. As a result of the gravitational acceleration g, block 1 moves horizontally and block 2 can only move vertically. There is no friction in this system. Moreover, block 1 is connected to a wall via a linear spring that has a spring constant k and a negligible free length. Therefore, the elongation of the spring is the position x of block 1 from the wall. For block 2, its horizontal distance to the wall is l and its vertical position is y as shown in Fig. 3. Use Newtonian mechanics to answer the following questions.

(a) Draw a free-body diagram of the two blocks.

(b) Apply Newton’s second law to derive the equations of motion of the two blocks. Elimi-nate constraint force(s) from your equations of motion to obtain a nonlinear, differential equation governing only the variable θ(t), where θ is the angle between the rigid rod and the vertical as shown in Fig. 3.

(c) Determine an algebraic equation governing equilibrium positions θ0 of the system. The equation should involve parameters such as mg and kl. Show that there is only one possible equilibrium for 0 < θ0 < 2/π.

(d) Derive a linearized equation of motion around the equilibrium position. If the two-block system is subjected to disturbance, will the system oscillate around the equilibrium position? Why?

Figure 3: A two-block system with a linear spring and a rigid rod

Figure 4: Linearization of the central force motion of a particle

4. The small particle of mass m and its restraining cord are spinning with an angular velocity ω on the horizontal surface of a smooth disk as shown in Fig. 4. The input force Fs(t) applied to the cord depends on time t. As a result, the angular velocity ω and the radial position r of the particle are not constant.

(a) Draw a free-body diagram of the particle and shows that the angular momentum is conserved. Therefore,

where θ is the angular position of the particle, the dot is the time derivative, and h0 is the initial angular momentum of the particle.

(b) Apply Newton’s second law in polar coordinates to derive the equation of motion. Sim plify the equation in the radial direction through use of (1) to obtain

(c) When Fs(t) = , a constant force, the particle will undergo a circular motion. Therefore, r(t)= and ω(t)= are both constant. Determine  and .

(d) When Fs(t) undergoes a small change from , e.g.,

the radial position of the particle will deviate from the circular orbit accordingly, i.e.,

Substitute (3) and (4) into (2) to linearize the equation. Show that the linearized equation takes the form. of


Also, specify the initial conditions η(0) and ˙η(0). Hint: First, you need to show that the binomial expansion of r−3 is


(e) If the force increment ∆F is constant, determine r(t) from (4) and (5). Does the response r(t) oscillate or decay? Plot r(t) with respect to time t.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图