代写COMP90086 Computer Vision, 2024 Semester 2 Assignment 2: Patch matching with neural networks代写留学生P

COMP90086 Computer Vision, 2024 Semester 2

Assignment 2: Patch matching with neural networks

Introduction

Finding correspondences between keypoints is a critical step in many computer vision applications. It can be used to align images when constructing a panorama from lots of separate photogtraps, and it is used to find point correspondences between keypoints detetected in multiple views of a scene.

This assignment uses a dataset generated from many views of the Trevi fountain in Rome. Finding correspondences between detected keypoints is a critical step in the pipeline for reconstructing a 3D representation of the fountain from individual photographs.

The dataset in this assignment is generated as a set of pairs of image patches taken centred at detected  keypoints. The image patches are 64x64 pixels each and each training sample is made of two patches  placed side by side to make a 128x64 image. For half the training set (10,000 examples in the 1good’ subdirectory) the two patches are from two separate views of the same keypoint. For the other half (10,000 examples in the ’0bad’ subdirectory) the two patches are from two different keypoints. Figure 1 shows an example of each of these. The validation directory is similarly structured but contains four times as many non-matching pairs (2000 examples in ’0bad’) as matching pairs (500 examples in  ’1good’).

Figure 1: Corresponding (left) and non-corresponding (right) pairs of image patches

Your task is to create and train some neural networks that can tackle the problem of determining whether the two patches correspond or not.

1. Baseline Neural Network [2 pt]

Run the baseline neural network implementation in the provided python notebook and in your report, you should include the loss and accuracy curves for the training and validation sets in your report and discuss what these imply about the baseline model.

The validation set contains more bad examples than good.  Why might this be a sensible way of testing for the task of finding feature correspondences?  Should the training environment also reflect this imbalance?

2. Regularizing your Neural Network [2pt]

To regularize the network, your should try adding a regularization layer (see the Keras documenation for these layers). Try adding a Dropout() layer after Flatten() and try different rate values to see what the effect of this parameter is.  Include the loss and accuracy plots in your report for three different choices of the rate parameter.  Describe the changes you see in these loss and accuracy plots in your report and suggest what the best choice of rate value is from the three you have reported.

3. Convolutional Neural Network [3pt]

Design a Convolutional Neural Network to solve this challenge.  If you use Conv2D() layers imme- diately after the LayerNormalization layer these convolutions will apply identically to both image patches in each input sample. Try using one or two Conv2D() layers with relu activations. You should explore the value of having different numbers of filters, kernel sizes, and strides before the Flatten() layer.

Briefly describe the set of settings you tried in your report in a table (this should be around 10 settings). For each setting, report the final training loss and accuracy as well as the validation loss and accuracy.

Include a discussion of the results of these experiments in your report. Identify your best performing design and discuss why you think this may have been best.

Submission

You should make two submissions on the LMS: your code and a short written report explaining your method and results. The response to each question should be no more than 500 words.

Submission will be made via the Canvas LMS. Please submit your code and written report separately under the Assignment 2 link on Canvas.

•  Your code submission should include the Jupyter Notebook (please use the provided template) with your code and any imagefiles we will need to run your code. Please include the cell output in your notebook submission if possible.

•  Your written report should be a .pdf with your answers to each of the questions.  The report should address the questions posed in this assignment and include any images, diagrams, or tables required by the question.

Evaluation

Your submission will be marked on the correctness of your code/method, including the quality and ef- ficiency of your code. You should use built-in Python functions where appropriate and use descriptive variable names. Your written report should clearly address the questions, and include all of the specific outputs required by the question (e.g., images, diagrams, tables, or responses to sub-questions).

Late submission

The submission mechanism will stay open for one week after the submission deadline. Late submis- sions will be penalised at 10% of the total possible mark per 24-hour period after the original deadline. Submissions will be closed 7 days (168 hours) after the published assignment deadline, and no further submissions will be accepted after this point.

To request an extension on this assignment, please see the FEIT extension policy and follow the steps below:

To request an extension of 1-3 days (without AAP), complete the declaration form at the website above and upload it to Canvas under Assignment 2 extension request.

To request a longer extension (without AAP), please apply for Special Consideration.

If you have an AAP, please request an extension by completing the Assignment 2 extension request form. on Canvas and uploading your AAP.

Please note that we can only accept extension requests via Canvas up until the assignment deadline. Late extension requests can only be granted through Special Consideration.  The longest extension granted on this assignment is 7 days (5 working days + weekend).




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图