代做EEEM061: Advanced 5G Wireless Technologies Semester 2 2021/2代写R编程

EEEM061: Advanced 5GWireless Technologies

Semester 2 2021/2

A1.

(a)         In relation to the transmission of wireless systems:

(i)          In less than 100 words explain what the “water-filling” power allocation is, and what its main practical requirement is in order to apply it. [10 %]

(ii)         In less than 100 words, and without using equations, explain how the water- filling power allocation can be applied to single-user 5G MIMO systems. [10 %]

(iii)        In less than 100 words, give another example than single-user 5G MIMO, that water-filling power allocation can be applied. Justify your answer. [10 %]

(b)        Assume a 5G  Multi-Input, Single-Output system, with two transmit and one receive antennas, where ℎi (i  = 1,2) is the  (complex) transmission channel from transmit antenna i to the receiver. Also assume complex additive white Gaussian  Noise  of variance σ 2 .

(i)          Derive the capacity or the system in the case where we transmit the same signal from  both  antennas with a total transmit signal power P = 1, and when ℎ1 = 1 + j, ℎ2 = 2 + j and σ 2 =  1. [20 %]

(ii)         For the transmission method that maximises the capacity, of part (i) derive the “effective” transmission channel that the receiver experiences. Explain all steps of your derivation. [20 %]

(iii)        If BPSK symbols (e.g., +1, -1) are transmitted with equal probability and by using the method of part (ii), and if the received signal at the receive antenna is y = 3 + j, calculate the Log-Likelihood-Ratio of the detected bit, give the value of the detected bit, and comment on the reliability of the detected bit (i.e., if it is high or not). Assume the transmission parameters of part (i). Also assume that the bit 0 is mapped onto symbol +1 and that the bit 1 is mapped onto BPSK symbol -1. Justify your answer. [30 %]

A2.

(a)         In relation to OFDM systems:

(i)          Given the bandwidth W and time duration T, and in less than 100 words

explain 1) whether it is possible to have infinite number of subcarriers and why; 2) what the maximum number of subcarriers is. [10 %]

(ii)         In less than 100 words describe the orthogonality condition in OFDM

systems in the frequency- domain and in the time-domain, respectively. [10 %]

(iii)        In less than 100 words explain how inter-symbol interference (ISI) and inter- carrier interference (ICI) can be avoided in OFDM systems. [10 %]

(iv)       Assume a baseline OFDM system employing QPSK modulation and a rate ½ channel code. Propose an OFDM system that can achieve 267% higher data rate than the baseline system. In less than 100 words explain which parts of the system need to be changed and the price to pay for the increased data rate. [10 %]

(v)        Given the OFDM signal model

Yk = XkHk +Vk ; k = 0,1, N -1

Zk = WkYk

where Yk is the kth sample of the DFT output; Xk is the symbol carried by the kth subcarrier;

Hk is the channel frequency response at the kth subcarrier; Vk is the noise at the kth subcarrier;

Wk is the equalizer coefficient for the kth subcarrier; Zk is the equalizer output.

Explain why the MMSE equalizer can avoid the noise enhancement  problem. Your interpretation needs to be supported by mathematic analysis. [10 %]

(vi)       Calculate the Peak-to-Average-Power-Ratio (PAPR) value of the signal

s(t) =sin(2πft)+cos(2πft); 0

[10 %]

(b)        In relation to the Sparse-Code Multiple Access (SCMA) system with 6 users sharing 4 subcarriers as shown in Fig. 1.

(i)          Draw the factor graph of such an SCMA system. [10 %]

Figure 1

(ii)        Convert the factor graph into a signature matrix. [10 %]

(iii)       Calculate the value of the overloading factor dv (effective spreading) and dc (where dc is the number of symbols that are allowed to interfere to each other at each subcarrier). In less than 100 words explain the practical significance of each parameter. [10 %]

(iv)        Illustrate how to construct the four codewords to form the codebook for the 3rd user (UE3). [10 %]

A3.

(a)         In relation to 5G wireless systems:

(i)         A generic expression of the array factor can be expressed as

In less than 100 words, propose a technique to suppress sidelobes. [10 %]

(ii)         In less than 100 words explain three major benefits of non-orthogonal

multiple access (NOMA) in comparison to orthogonal multiple access (OMA). [10 %]

(iii)        In less than 100 words explain the purpose of network densification and discuss the two contradictory effects when cell density becomes higher. [10 %]

(iv)        In less than 150 words explain the main requirements for the mMTC and

URLLC services, respectively, and how to use different numerologies to

support them. Imagine the problems we will encounter if these two services are provided by 4G-LTE networks. [15 %]

(v)        Given the capacity formula C = W j kl0g2 [1 + SINRj,k ],  suggest a

practical solution that can fulfil the double summation in the above formula. [10 %]

(b)        Consider an indoor mm-wave communication scenario where the transmitter is mounted on the wall. The penetration loss of the wall is PeL=40dB. Convert the penetration loss into linear scale and interpret the result. [10 %]

(c)        Figure 2 shows an indoor mm-Wave communication system where the operating frequency f is 30GHz. Suppose the distance between the transmitter (source) and the user (destination) ddirect is 4 meters, and there is a blockage between them. For reliable transmissions, the channel gain has to be greater than -80dB (this threshold in linear scale is  Gthresold  =10-8).

(i)         Calculate the channel gain of direct link between the transmitter and the

user, and evaluate the possibility for reliable transmissions by relying on the direct link.

Hint:   the  channel  gain of the direct  link  between the transmitter and the  user is modelled as: where the penetration loss PeLdB  is -35dB in decibel scale or PeL= 10一3.5  in linear scale. [15 %]

(ii)        Suppose that the distance between the transmitter and the wall is dg  =  6

meters, the angle θi=30o; the distance between the wall and the user is dh = 3 meters, the  angle  θs=15o .  To   combat the blockage  effect,  we  design  a reconfigurable intelligent surface (RIS) that can be mounted on the wall. As a rule of thumb, the size of each element on the RIS is where λ is the wavelength.  Determine  the  minimum number of elements Nmin that is required to achieve reliable communication.

Hints: The total effective channel gain of the end-to-end channel through RIS is expressed as GRIS   = PL × Rc,  where PL and Rc are path loss and reflection coefficient. In linear scale, they are defined respectively as

[20 %]




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图