COMP9414代写、Python语言编程代做
COMP9414 24T2
Artificial Intelligence
Assignment 2 - Reinforcement Learning
Due: Week 9, Wednesday, 26 July 2024, 11:55 PM.
1 Problem context
Taxi Navigation with Reinforcement Learning: In this assignment,
you are asked to implement Q-learning and SARSA methods for a taxi nav-
igation problem. To run your experiments and test your code, you should
make use of the Gym library1, an open-source Python library for developing
and comparing reinforcement learning algorithms. You can install Gym on
your computer simply by using the following command in your command
prompt:
pip i n s t a l l gym
In the taxi navigation problem, there are four designated locations in the
grid world indicated by R(ed), G(reen), Y(ellow), and B(lue). When the
episode starts, one taxi starts off at a random square and the passenger is
at a random location (one of the four specified locations). The taxi drives
to the passenger’s location, picks up the passenger, drives to the passenger’s
destination (another one of the four specified locations), and then drops off
the passenger. Once the passenger is dropped off, the episode ends. To show
the taxi grid world environment, you can use the following code:

env = gym .make(”Taxi?v3 ” , render mode=”ans i ” ) . env
s t a t e = env . r e s e t ( )
rendered env = env . render ( )
p r i n t ( rendered env )
In order to render the environment, there are three modes known as
“human”, “rgb array, and “ansi”. The “human” mode visualizes the envi-
ronment in a way suitable for human viewing, and the output is a graphical
window that displays the current state of the environment (see Fig. 1). The
“rgb array” mode provides the environment’s state as an RGB image, and
the output is a numpy array representing the RGB image of the environment.
The “ansi” mode provides a text-based representation of the environment’s
state, and the output is a string that represents the current state of the
environment using ASCII characters (see Fig. 2).
Figure 1: “human” mode presentation for the taxi navigation problem in
Gym library.
You are free to choose the presentation mode between “human” and
“ansi”, but for simplicity, we recommend “ansi” mode. Based on the given
description, there are six discrete deterministic actions that are presented in
Table 1.
For this assignment, you need to implement the Q-learning and SARSA
algorithms for the taxi navigation environment. The main objective for this
assignment is for the agent (taxi) to learn how to navigate the gird-world
and drive the passenger with the minimum possible steps. To accomplish
the learning task, you should empirically determine hyperparameters, e.g.,
the learning rate α, exploration parameters (such as ? or T ), and discount
factor γ for your algorithm. Your agent should be penalized -1 per step it
2
Figure 2: “ansi” mode presentation for the taxi navigation problem in Gym
library. Gold represents the taxi location, blue is the pickup location, and
purple is the drop-off location.
Table 1: Six possible actions in the taxi navigation environment.
Action Number of the action
Move South 0
Move North 1
Move East 2
Move West 3
Pickup Passenger 4
Drop off Passenger 5
takes, receive a +20 reward for delivering the passenger, and incur a -10
penalty for executing “pickup” and “drop-off” actions illegally. You should
try different exploration parameters to find the best value for exploration
and exploitation balance.
As an outcome, you should plot the accumulated reward per episode and
the number of steps taken by the agent in each episode for at least 1000
learning episodes for both the Q-learning and SARSA algorithms. Examples
of these two plots are shown in Figures 3–6. Please note that the provided
plots are just examples and, therefore, your plots will not be exactly like the
provided ones, as the learning parameters will differ for your algorithm.
After training your algorithm, you should save your Q-values. Based on
your saved Q-table, your algorithms will be tested on at least 100 random
grid-world scenarios with the same characteristics as the taxi environment for
both the Q-learning and SARSA algorithms using the greedy action selection
3
Figure 3: Q-learning reward. Figure 4: Q-learning steps.
Figure 5: SARSA reward. Figure 6: SARSA steps.
method. Therefore, your Q-table will not be updated during testing for the
new steps.
Your code should be able to visualize the trained agent for both the Q-
learning and SARSA algorithms. This means you should render the “Taxi-
v3” environment (you can use the “ansi” mode) and run your trained agent
from a random position. You should present the steps your agent is taking
and how the reward changes from one state to another. An example of the
visualized agent is shown in Fig. 7, where only the first six steps of the taxi
are displayed.
2 Testing and discussing your code
As part of the assignment evaluation, your code will be tested by tutors
along with you in a discussion carried out in the tutorial session in week 10.
The assignment has a total of 25 marks. The discussion is mandatory and,
therefore, we will not mark any assignment not discussed with tutors.
Before your discussion session, you should prepare the necessary code for
this purpose by loading your Q-table and the “Taxi-v3” environment. You
should be able to calculate the average number of steps per episode and the
4
Figure 7: The first six steps of a trained agent (taxi) based on Q-learning
algorithm.
average accumulated reward (for a maximum of 100 steps for each episode)
for the test episodes (using the greedy action selection method).
You are expected to propose and build your algorithms for the taxi nav-
igation task. You will receive marks for each of these subsections as shown
in Table 2. Except for what has been mentioned in the previous section, it is
fine if you want to include any other outcome to highlight particular aspects
when testing and discussing your code with your tutor.
For both Q-learning and SARSA algorithms, your tutor will consider the
average accumulated reward and the average taken steps for the test episodes
in the environment for a maximum of 100 steps for each episode. For your Q-
learning algorithm, the agent should perform at most 13 steps per episode on
average and obtain a minimum of 7 average accumulated reward. Numbers
worse than that will result in a score of 0 marks for that specific section.
For your SARSA algorithm, the agent should perform at most 15 steps per
episode on average and obtain a minimum of 5 average accumulated reward.
Numbers worse than that will result in a score of 0 marks for that specific
section.
Finally, you will receive 1 mark for code readability for each task, and
your tutor will also give you a maximum of 5 marks for each task depending
on the level of code understanding as follows: 5. Outstanding, 4. Great,
3. Fair, 2. Low, 1. Deficient, 0. No answer.
5
Table 2: Marks for each task.
Task Marks
Results obtained from agent learning
Accumulated rewards and steps per episode plots for Q-learning
algorithm.
2 marks
Accumulated rewards and steps per episode plots for SARSA
algorithm.
2 marks
Results obtained from testing the trained agent
Average accumulated rewards and average steps per episode for
Q-learning algorithm.
2.5 marks
Average accumulated rewards and average steps per episode for
SARSA algorithm.
2.5 marks
Visualizing the trained agent for Q-learning algorithm. 2 marks
Visualizing the trained agent for SARSA algorithm. 2 marks
Code understanding and discussion
Code readability for Q-learning algorithm 1 mark
Code readability for SARSA algorithm 1 mark
Code understanding and discussion for Q-learning algorithm 5 mark
Code understanding and discussion for SARSA algorithm 5 mark
Total marks 25 marks
3 Submitting your assignment
The assignment must be done individually. You must submit your assignment
solution by Moodle. This will consist of a single .zip file, including three
files, the .ipynb Jupyter code, and your saved Q-tables for Q-learning and
SARSA (you can choose the format for the Q-tables). Remember your files
with your Q-tables will be called during your discussion session to run the
test episodes. Therefore, you should also provide a script in your Python
code at submission to perform these tests. Additionally, your code should
include short text descriptions to help markers better understand your code.
Please be mindful that providing clean and easy-to-read code is a part of
your assignment.
Please indicate your full name and your zID at the top of the file as a
comment. You can submit as many times as you like before the deadline –
later submissions overwrite earlier ones. After submitting your file a good
6
practice is to take a screenshot of it for future reference.
Late submission penalty: UNSW has a standard late submission
penalty of 5% per day from your mark, capped at five days from the as-
sessment deadline, after that students cannot submit the assignment.
4 Deadline and questions
Deadline: Week 9, Wednesday 24 of July 2024, 11:55pm. Please use the
forum on Moodle to ask questions related to the project. We will prioritise
questions asked in the forum. However, you should not share your code to
avoid making it public and possible plagiarism. If that’s the case, use the
course email cs9414@cse.unsw.edu.au as alternative.
Although we try to answer questions as quickly as possible, we might take
up to 1 or 2 business days to reply, therefore, last-moment questions might
not be answered timely.
For any questions regarding the discussion sessions, please contact directly
your tutor. You can have access to your tutor email address through Table
3.
5 Plagiarism policy
Your program must be entirely your own work. Plagiarism detection software
might be used to compare submissions pairwise (including submissions for
any similar projects from previous years) and serious penalties will be applied,
particularly in the case of repeat offences.
Do not copy from others. Do not allow anyone to see your code.
Please refer to the UNSW Policy on Academic Honesty and Plagiarism if you
require further clarification on this matter.

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图