代做MATH377: Financial and Actuarial Modelling in R Tutorial 5代做Statistics统计

MATH377: Financial and Actuarial Modelling in R

Tutorial 5

Exercise 1. Let X = (X1, X2) be a bivariate normal distributed random vector with mean vector µ = (1.5, 1) and covariance matrix

a) Evaluate the density function of X at x = (1, 1) and x = (0, 2).

b) Compute P(−2 ≤ X1 ≤ 4, X2 > 1).

c) Plot the 3D surface of this bivariate normal density and its contours. Hint: You can modify the code in the lecture notes to plot the loglikelihood of a normal distribution. However, to use outer() you may need to pass a function similar to this one: f <- function(x, y) dmvnorm(cbind(x, y), mu , sigma). Finally, use the functions contour() and persp() to create the plots.

d) Generate 5000 observation from X and create a scatter plot for the generated sample.

e) Compute the empirical mean vector, covariance matrix, and correlation matrix for the generated sample in d).

f) Using your simulated sample in d), approximate the 95% quantile of X1 · X2.

Exercise 2. Consider the cars data set in R.

a) Compute the correlation between speed and dist, and create a scatter plot to compare speed vs dist. Do you see any relationship?

b) Fit a linear regression model to explain distance in terms of speed.

c) Add the regression line to your plot in a). Hint: this can be done using the abline() function applied to your regression model in b).

d) Predict dist for values of speed of 28 and 30.

e) Does the model seem to satisfy the assumptions of mean zero, constant variance, and normality for the residuals?

Exercise 3. Consider the Boston data set available in the MASS package.

a) Create a scatter plot of lstat vs medv. Do you see any relationship?

b) Fit a linear regression model to explain medv in terms of lstat.

c) Add the regression line to your plot in a).

d) In a linear model, we can specify that the relationship between the independent variable and dependent variable is given in the form. of an nth-degree polynomial. One way to specify this in R is by using I(). Fit a linear model with medv ~ lstat + I(lstatˆ2), then predict medv for values of lstat of 0 and 40, and add these values as a line in your plot in a).

e) Use an information criteria to conclude which model among the ones in b) and d) describes the data better.

f) An alternative way to produce the same model as in d) is by using medv ~ poly(lstat, 2, raw = TRUE). In the previous line of code, 2 can be changed to other integer values to specify polynomials of different degrees. Fit a linear model with a 5th-degree polynomial for lstat, then predict medv for values of lstat of 0 and 40, and add a line in your plot in a) using these values.

g) Use an information criteria to conclude which of the three models best describes the data.

h) Fit a linear model with a 8th-degree polynomial. Conclude based on the information criteria if this model is a better choice (recall the concept of overfitting).




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图