代写FIT3152 Data analytics – 2024: Assignment 3代做R语言

FIT3152 Data analytics – 2024: Assignment 3

Your task

●    The objective of this assignment is to gain familiarity with Natural Language Processing and network analysis using R.

●    This is an individual assignment.

Value

●    This assignment is worth 20% of your total marks for the unit.

    It has 36 marks in total.

Suggested Length

•    8 – 10 A4 pages (for your report) + extra pages as appendix for your R script.

•    Font size 11 or 12pt,single spacing.

Due Date

11.55pm Thursday 6th June 2024

Submission

You will submit 3 files:

   Submit your report as a single PDF file.

   Submit your video file as an mp4, m4vetc.

   Submit your corpus as either a zipped folder or csv file on Moodle. Please do not put your pdf and video in your zip file.

•    Use the naming convention: FirstnameSecondnameID.{pdf, zip, csv, mp4}

   Turnitin will be used for similarity checking all written submissions.

Generative AI Use

•    In this assessment, you must not use generative artificial intelligence (AI) to generate any materials or content in relation to the assessment task.

Late

Penalties

●    10% (3 mark) deduction per calendar day for up to one week.

●    Submissions more than 7 calendar days after the due date will receive a mark of zero (0) and no assessment feedback will be provided.

Instructions and data

In this assignment, you will create a corpus of documents and analyse the relationships between them, as well as the relationships between the important words used in these documents.

Background material for this assignment was covered in Weeks 10, 11, and 12. You are free to consult any other references, including those listed at the end of the document.

There are two options for compiling your written report:

(1) You can create your report using any word processor with your R code pasted in as machine- readable text as an appendix, and save as a pdf, or

(2) As an R Markdown document that contains the R code with the discussion/text interleaved. Render this as an HTML file and save as a pdf.

Your video report should be less than 100MB in size. You may need to reduce the resolution of your original recording to achieve this. Use a standard file format such as .mp4, or mov for submission.

Tasks

1.            Collect a set of (machine-readable text) documents from an area of interest. For example, these could be a set of news stories, movie reviews, blogs, factual or creative writing.

There is no restriction on the type of material you can choose although please avoid texts that might be offensive to people. As a guide, you should aim for the following:

•       Each document should beat least 100 words in length. Collect at least 15 documents.

•       Ideally, each document should cover one main topic and you should have at least 3 different topic areas in your collection of documents. Label each document as belonging to one of the topic areas in your corpus.

•       You can collect the documents as PDFs or as copied text from web-based articles or as text or other files.

•       Reference the source of your documents (URL or bibliographic citation (APA or Harvard style). (2 Marks)

2.            Create your corpus by first converting each document into a text format. The type of original material you collect will determine the way you need to do this. For some formats you can simply copy and paste the text into an empty text file. For Word documents, HTML, and PDFs etc., you may find it simpler to create the text document using “export”, or “save as” function in software.

•       Describe the process you follow for this step in your report.

•       Create your corpus using one of the methods covered in lecture videos and applied sessions. This could either be a folder of text files or a suitably formatted CSV file. Use suitable identifiers for your text file names or document IDs so that you can recognize the document in your clustering or network graphs. (3 Marks)

3.             Follow the text processing steps covered in lecture videos and applied sessions to create your Document-Term Matrix (DTM).

•       As part of this process, you may need to make particular text transformations to either preserve keywords, or to remove unwanted terms, for example, characters or artefacts from the original formatting. Describe any processing of this kind in your report or state why you did not need to do so.

•       Your DTM should contain approximately 20 tokens after you have removed sparse  terms. You will need to do this by trial-and-error to get the right number of tokens.

•       Include your DTM as a table in the appendix of your report. (3 Marks)

4.            Create a hierarchical clustering of your corpus and show this as adendrogram.

•       Use the cosine distance between each document for clustering.

•       Identify which cluster each document belongs to.

•       Calculate the accuracy with which the clustering groups documents by topic.

•       Give a qualitative description of the quality of the clustering. (4 Marks)

5             Create a single-mode network showing the connections between the documents based on the number of shared terms.

•       To do this you will need to first calculate the connections between each document using the method shown in Week 12, or another method of your choice.

•       What does this graph tell you about the relationship between the documents? Are there any groups in the data you can clearly identify? What are the most important (central) documents in the network?

•       Improve your graph over the basic example given in Week 12 to highlight two or more interesting features of your data, such as the strength of connections, the  relative importance of nodes, communities in the network. (4 Marks)

6              Repeat all the activities in Question 5, but now looking at the words (tokens). (4 Marks)

7             Create a bipartite (two-mode) network of your corpus, with document ID as one type of node and tokens as the other type of node.

•       To do this you will need to transform. your data into a suitable format.

•       What does this graph tell you about the relationship between words and documents? Are there any groups in the data you can clearly identify?

•       Improve your graph over the basic example given in Week 12 to highlight two or more interesting features of your data, such as the strength of connections, the  relative importance of nodes, communities in the network. (4 Marks)

8             Write a brief report (suggested length 8 – 10 pages).

•       Briefly summarise your results identifying important documents, tokens and groups within the corpus. Comment on the relative effectiveness of clustering versus social network analysis to identify important groups and relationships in the data.

•       Can you suggest improvements to text processing used in this assignment to better discriminate between the documents studied? Describe briefly how and why these  methods work. To do this you may want to refer to recent references on Natural Language Processing. You are not required to implement these improvements.

•       Include your R script as an appendix. Use commenting in your R script, where

appropriate,to help a reader understand your code. Alternatively combine working, comments and reporting in R Markdown. (8 Marks)

9              Record a short presentation using your smart phone, Zoom, or similar method. Your presentation should be approximately 5 minutes in length and summarise your main findings, as well as describing how you conducted your research and any assumptions made. Pay particular emphasis to your results for the investigative tasks. (Submission Hurdle and 4 Marks)

Software

It is expected that you will use R for your data analysis and graphics and tables. You are free to use any R packages you need but please list these in your report and include in your R code.

References

Statistical Analysis of Network Data with R, Kolaczyk, E. D., Csárdi, G. Springer 2020. Chapters 1 – 4 A User’s Guide to Network Analysis in R, Luke, D. A. Springer 2015.

Network visualization with R, PolNet 2018 Workshophttps://kateto.net/

Bipartite/Two-Mode Networks in igraph, Phil Murphy & Brendan Knapp.https://rpubs.com/ tmand iGraph package manuals.

Text Data Mining, Chengqing Zong, C., Xia, R., Zhang, J., Springer Nature, Singapore, 2021.







热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图