COMP20008 Assignment 1

 COMP20008 Elements of Data Processing

Assignment 1
March 3, 2021
Due date
The assignment is worth 20 marks, (20% of subject grade) and is due 8:00am Thursday
1
st April 2021 Australia/Melbourne time.
Background
Learning outcomes
The learning objectives of this assignment are to:
❼ Gain practical experience in written communication skills for documenting for data
science projects.
❼ Practice a selection of processing and exploratory analysis techniques through visuali￾sation.
❼ Practice text processing techniques using Python.
❼ Practice widely used Python libraries and gain experience in consultation of additional
documentation from Web resources.
Your tasks
There are three parts in this assignment, Part A, Part B, and Part C. Part A and Part B are
worth 9 marks each and Part C is worth 2 marks.
Getting started
Before starting the assignment you must do the following:
❼ Create a github account at https://www.github.com if you don’t already have one.
❼ Visit https://classroom.github.com/a/FSvGXkWI and accept the assignment. This
will create your personal assignment repository on github.
❼ Clone your assignment repository to your local machine. The repository contains im￾portant files that you will need in order to complete the assignment.
1
COMP20008 2021 SM1
Part A (Total 9 marks)
For Part A, download the complete “Our World in Data COVID-19 dataset” (“owid-covid￾data”) from https://covid.ourworldindata.org/data/owid-covid-data.csv.
Part A Task 1 Data pre-processing (3 marks)
Program in python to produce a dataframe by
1. (2 marks) aggregating the values of the following four variables:
❼ total cases
❼ new cases
❼ total deaths
❼ new deaths
by month and location in the year 2020.
The dataframe should contain the following columns after completion of this sub-task:
❼ location
❼ month
❼ total cases
❼ new cases
❼ total deaths
❼ new deaths
Note: if there are no entries for certain combinations of locations and months, there
should be no entry for those combinations in the dataframe.
2. (1 mark) adding a new variable, case fatality rate, to the dataframe produced from
sub-task 1. The variable, case fatality rate, is defined as the number of deaths per
confirmed case in a given period. Do not impute missing values.
The final dataframe should contain the columns in the following order: ❼ location
❼ month
❼ case fatality rate
❼ total cases
❼ new cases
❼ total deaths
❼ new deaths
and the rows are to be sorted by location and month in ascending order.
Page 2
COMP20008 2021 SM1
Print the first 5 rows of the final dataframe to the standard output.
Save the new dataframe to a CSV file named, “owid-covid-data-2020-monthly.csv” in
the same directory as the python program. Your program should be called from the command
line as follows:
python parta1.py owid-covid-data-2020-monthly.csv
Hint: You will need to use appropriate functions for the aggregation based on your under￾standings of the variables.
Part A Task 2 Visualisation (2 marks)
Program in python to produce two scatter plots:
1. (1 mark) a scatter plot of case fatality rate (on the y-axis) and confirmed new cases on
the x-axis) by locations in the year 2020.
Output the plot to scatter-a.png in the same directory as the python program.
2. (1 mark) a second scatter plot of the same data with only one change: the x-axis is
changed to a log-scale.
Output the plot to scatter-b.png in the same directory as the python program. For
this plot, apply preprocessing if necessary.
Your program should be called from the command line as follows:
python parta2.py scatter-a.png scatter-b.png
Part A Task 3 Discussion and visual analysis (4 marks)
A short report of your visual analysis of the two plots produced from Task 2.
It is expected that the visual analysis would include:
1. (1.5 marks) a brief introduction/description of the raw data, including the source, any
limitations you observe in the data and all preprocessing steps taken on the raw data
to produce the visualisations,
2. (1.5 marks) explanation of the plots and patterns observed, and
3. (1 mark) a discussion contrasting the two scatter plots.
The report is to be 500 - 600 (maximum) words excluding figures, about 1 page, in pdf
format, and must include the two plots, scatter-a.png and scatter-b.png, produced
from Part A Task 2.
The filename of the report must be “owid-covid-2020-visual-analysis.pdf ”.
Part B (Total 9 marks)
For Part B, download the cricket dataset from the LMS. This dataset contains a sample of
cricket-related articles from BBC News. We wish to build a search engine that will allow a
user to specify keywords and find all articles related to those keywords.
Page 3
COMP20008 2021 SM1
Part B Task 1: Regular Expressions (1 mark)
Each article contains a document ID which uniquely identifies the document. This document
ID is comprised of four letters followed by a hyphen, followed by three numbers and optionally
ending in a letter. For example, each of the following are valid document IDs:
❼ ABCD-123
❼ ABCD-123V
❼ XKCD-999A
❼ COMP-200
The document IDs are not located in a consistent place in each article. Use a regular expres￾sion to identify the document ID for each document in the dataset. Write a Python program
in partb1.py that produces a CSV file called partb1.csv containing the filenames and Doc￾ument IDs for each document in the dataset. Your CSV file should contain the following
columns in the order below:
❼ filename
❼ documentID
Your program should be called from the command line along with the name of the CSV file:
python partb1.py partb1.csv
Part B Task 2: Preprocessing (1 mark)
We now wish to perform the following preprocessing on each article in the cricket folder in
order to make them easier to search:
❼ Remove all non-alphabetic characters (for example, numbers and punctuation charac￾ters), except for spacing characters such as whitespaces, tabs and newlines.
❼ Convert all spacing characters such as tabs and newlines to whitespace and ensure that
only one whitespace character exists between each word
❼ Change all uppercase characters to lower case
Create a Python program in partb2.py that performs this preprocessing.
Your program should be called from the command line along with the filename of a document.
For example:
python partb2.py cricket001.txt
Your program should then load the specified file, perform the preprocessing steps above
and print the results to standard output.
Hint: You may wish to create a function for performing this preprocessing as you will need
to perform this pre-processing as part of each task in Part B
Page 4
COMP20008 2021 SM1
Part B Task 3: Basic Search (2 marks)
Create a Python program in partb3.py that will allow the user to search for articles con￾taining particular keywords. Your program should be called from the command line along
with the keywords being searched for. For example:
python partb3.py keyword1 keyword2 keyword3
You can assume each keyword will be separated by a whitespace character and that
between 1 and 5 keywords will be entered. Your program should then return the document
IDs of the documents that contain all of the keywords in the user’s search query. For this
task:
❼ You should check for matches after performing the preprocessing in Task 2. For example,
searching for the word ’old’ should return articles containing the words ’Old’ or ’OLD’.
❼ The keywords that the user searches for are separate keywords. You are not required to
match exact phrases. For example, if a user searches for the keywords ’captain early’,
these words do not need to appear consecutively in the document to constitute a match.
❼ Only documents that contain the actual keyword should return a match. For example,
searching for the word ’old’ should not return articles containing the word ’golden’.
Your program should output the document IDs of each article containing all of the specified
keywords.
Hint: You may wish to load partb1.csv back into your program
Part B Task 4: Advanced Search (2 marks)
We now wish to expand the search feature to enable inexact matching. For example, a
user should be able to specify the keyword ’missing’ and the search should also return articles
containing the related words ’missed’ or ’miss’. Create a Python program in partb4.py based
on your response to Task 3 that uses a Porter Stemmer to enable this inexact matching. Your
program should be called from the command line along with the keywords being searched for.
For example:
python partb4.py keyword1 keyword2 keyword3
Your program should output the document IDs of each article containing all of the specified
keywords, or words considered by the Porter Stemmer to have the same base. For this task:
❼ You should check for matches after performing the preprocessing in Task 2. For example,
searching for the word ’old’ should return articles containing the words ’Old’ or ’OLD’.
❼ The keywords that the user searches for are separate keywords. You are not required to
match exact phrases. For example, if a user searches for the keywords ’captain early’,
these words do not need to appear consecutively in the document to constitute a match.
❼ Other than inexact matches permitted by the Porter Stemmer, only documents that
contain the actual keyword should return a match. For example, searching for the word
’old’ should not return articles containing the word ’golden’.
Note that other than the final point this list of requirements is the same as for Task 3.
Page 5
COMP20008 2021 SM1
Part B Task 5: Search Rankings (3 marks)
We wish to further expand the search feature to enable documents to be ranked, so that
those most relevant to the user’s keywords are displayed at the top of the list. One way
of computing such a ranking is to use TF-IDF along with the cosine similarity measure as
discussed in lectures. Create a Python program in partb5.py based on your response to
Task 4 that ranks articles returned by Task 4 by cosine similarity score.
Your program should be called from the command line along with the keywords being
searched for. For example:
python partb5.py keyword1 keyword2 keyword3
Your program should output:
❼ The headings ’documentID’ and ’score’
❼ The document IDs of each article containing all of the specified keywords, or words
considered by the Porter Stemmer to have the same base.
❼ The cosine similarity score between the vector of stemmed keywords and the vector of
stemmed words appearing in the document for each document matched, rounded to
four decimal places.
You should assume that the collection being used by TF-IDF is the complete list of stemmed
words contained in articles returned by your Task 4 search. The output should be sorted in
descending order by cosine similarity score with the search query. For example, one sample
output might look like this:
documentID score
JDKC-105M 0.0618
BTAR-174V 0.0182
Part C(Total 2 marks)
GitHub Submission
Ensure all of your completed code files as well as your report have been pushed to the github
repository you created in the ’Getting Started’ section. We strongly encourage you to push an
updated version of your code to your github repository each time you make a major change.
Your repository must also contain a README file, which must contain your name and student
ID. It must also contain a brief description of your project and a list of dependencies.
Submission Instructions
Submit all pythin scripts and the pdf discussion report via LMS. A complete submittion
includes the following items:
1. parta1.py
2. parta2.py
Page 6
COMP20008 2021 SM1
3. owid-covid-2020-visual-analysis.pdf
4. partb1.py
5. partb2.py
6. partb3.py
7. partb4.py
8. partb5.py
9. A link to your GitHub repository
You must also have pushed the above files to your github repository, which the teaching staff
already have access to.
Extensions and late submission penalties
If requesting an extension due to illness, please submit a medical certificate to the lecturer.
If there are any other exceptional circumstances, please contact the lecturer with plenty of
notice. Late submissions without an approved extension will attract the following penalties
❼ 0 < hourslate <= 24 (2 marks deduction)
❼ 24 < hourslate <= 48 (4 marks deduction)
❼ 48 < hourslate <= 72: (6 marks deduction)
❼ 72 < hourslate <= 96: (8 marks deduction)
❼ 96 < hourslate <= 120: (10 marks deduction)
❼ 120 < hourslate <= 144: (12 marks deduction)
❼ 144 < hourslate: (20 marks deduction)
where hourslate is the elapsed time in hours (or fractions of hours).
This project is expected to require 15-20 hours work.
Academic honesty
You are expected to follow the academic honesty guidelines on the University website
https://academichonesty.unimelb.edu.au
Further information
A project discussion forum has also been created on the Ed forum. Please use this in the
first instance if you have questions, since it will allow discussion and responses to be seen by
everyone. There will also be a list of frequently asked questions on the project page.
Page 7

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图