代写BU.510.615 Python for Data Analysis代做Python编程

Python for Data Analysis

BU.510.615

Course Project

This supplement describes the data provided for your group project. These are real-world datasets. To protect the data provider’s proprietary information, the structure of these datasets, the locations of the tanks therein, and the invoices have been obfuscated so as not to reflect the real information of the data provider.

The datasets chronicle over a year’s fuel purchases (by the gas station owners) and sales at all city gas stations.

Data Dictionary

 Locations .csv

This dataset lists all the gas station locations and contains the following columns:

 Gas  Station  Location: The unique ID of the gas station

 Gas  Station  Name: The gas station name

 Gas  Station  Address: The gas station address

 Gas  Station  Latitude: The gas station latitude

 Gas  Station  Longitude: The gas station longitude

 Tanks .csv

Each gas station location may have more than one tank. This dataset contains informa- tion about these tanks and their attributes

 Tank  ID: A unique ID of each tank in the system

 Tank  Location: Gas station this tank is located at

 Tank  Number: ID of each tank in a specific location

 Tank  Type: The type of fuel this tank is used for:  U for regular gas, D for Diesel, and P for premium

 Tank  Capacity: Capacity of the tank in liters

  Invoices.csv

Each gas station purchases different fuel types from its supplier(s).  Every delivery of each fuel type to all tanks of a location generates one invoice. The invoices.csv dataset contains information about these invoices over time and has the following columns:

  Invoice  Date: Date of the purchase

  Invoice  ID: Unique ID of the invoice

  Invoice  Gas  Station  Location: Gas station location

 Gross  Purchase  Cost: Total Canadian Dollar (CAD) paid for the purchase

 Amount  Purchased: Total number of fuel liters purchased

  Fuel  Type: Purchased fuel type

• Fuel Level Part   1 .csv and Fuel Level Part 2 .csv

These two datasets contain fuel level information in each tank at frequent and mostly regular time stamps. These two datasets contain the following columns:

 Tank  ID: ID of each tank

  Fuel  Level: The amount of remaining fuel (inventory in liters)

 Time  Stamp: The time of inventory reporting

Problem Description

A gas station purchases fuel in bulk (thousands of liters) and sells it to customers like you and me. A typical gas station (location) may offer different types of fuel (regular gas, premium gas, diesel) and each type of gas may be stored in one or more than one tanks in that particular gas station. These tanks are usually underground, out of safety and limited space considerations. The number of tanks and capacity of each tank is driven by many factors such as available space, city regulations, closeness to the suppliers’ reservoirs, and demand, among other factors. It is common for a gas station to carry tens of thousands of liters of fuel at any time. At this relatively large scale, the following decisions may have significant consequences on the survival and profitability of the gas station:

•  Fuel replenishment frequency

•  Fuel replenishment quantity

This is an exciting managerial question for a business school student, with analytical skills, like you!  In the one hand, frequent replenishment in small quantities is attractive as it has less cash tied up to the fuel inventory. On the other hand, larger and less frequent deliveries may qualify the gas station for the quantity discount at every fuel replenishment offered by its supplier.

Independent of the fuel type, the supplier offers the following quantity discounts:

Purchase quantity

(liters)

Discount per liter

(cents)

0-15000

0

15000-25000

2

25000-40000

3

40000+

4

Business Question

Your team is responsible for thoroughly exploring the provided dataset, providing descriptive statistics, inspecting each gas station’s inventory replenishment pattern, visualizing it, and suggesting a better inventory policy that may save these gas stations a significant amount of money. Your decisions must be based on the provided data processed using python and its data analysis packages. You can ignore the gas delivery cost and focus on making the correct inventory replenishment decision that may reduce total purchasing cost while maintaining an excellent customer service level (by not running out of gas).

What questions should you answer in your report?

When embarking on a data-driven decision-making process, it is crucial to determine your analysis’s direction.  Typically,  hypotheses are formed during the initial exploration of the datasets.   In this project, we aim to analyze the fuel price and purchasing order data to evaluate how well we manage our fuel tanks’ inventory and order fuel.  By visualizing the inventory evolution trajectory, we can gain insights into our inventory management practices and identify areas for improvement. We can also determine which locations manage inventory effectively and save money and which locations have riskier inventory management practices (maintain lower safety inventory).  To quantify performance, we can compare the amount of money saved to the maximum potential savings possible if we optimize our purchasing strategy. It is important to consider inflation in our calculations, as the purchasing power of money changes over time. To do this, we need to find Canada’s monthly inflation rates, create a small new dataset with these rates, and join it with our existing data. Based on your analysis, you can develop recommendations for improving the inventory management policy of each location and estimate potential cost savings. Additionally, we can evaluate whether increasing the capacity of existing tanks would be beneficial and identify which fuel stations would benefit most. We can also explore whether a particular day of the week is best for ordering fuel. Keep in mind that answering these questions requires several rounds of data cleaning, merging, transforming, and visualization. While these directions are important, they are not exhaustive. Your analysis should explore significantly outside the scope of these directions to achieve a thorough understanding of our inventory management practices, cost structure, and overall efficiency.

Group Report Details

Each team is responsible for organizing its report. Each team will submit:

 One report in pdf format

• One notebook containing your code that reads the provided csv files and performs the analysis. Please do not change the provided file names. However, you need to change column names (using pandas) in each file.

Evaluation

We will evaluate your work for:

•  Data processing: cleaning, merging, . . .

•  Clarity of your code. Do not forget to leave useful comments in your code

•  Exploring the dataset and providing an overview of these datasets

•  Asking and answering the right business questions

  A thorough and a well-formatted report

•  Nicely formatted graphs

•  Academic integrity of your work

•  Following sound logic in answering the business questions

We will run your code and check your code results with the submitted report during the grading.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图