代写STAT7305 Assignment 2 – Clustering调试Python程序

STAT7305 Assignment 2 - Clustering

Due: Friday 26/9/2025 by 5pm ; Weighting: 17%

The R package gapminder offers a dataset summarising a small number of attributes of 142 countries, recorded every 5 years for 55 years from 1952 to 2007. The data can also be downloaded from Blackboard.

The dataset is complete, meaning that there are no missing values for any of the listed countries or years. We will focus on two different years: 1952 and 2007.

Two important variables in describing average quality of life in a country are life expectancy and gross domestic product (GDP) per capita. The GDP per capita is measured in “international dollars”, which here is “a hypothetical unit of currency that has the same purchasing power parity that the U.S. dollar had in the United States in 2005” . We also have a record of country populations, each either from censuses or from United Nations estimates.

You will aim to use this data to find clusters of countries which are similar, in the experience of the average inhabitant. Detailed questions are given below.

a) After looking at the data, potentially attempting clustering, and thinking about this, decide whether you prefer to retain all three quantitative variables for clustering or drop one. In either case, provide justification for your decision. [2 marks]

b) You will use two forms of clustering to cluster the data over the variables chosen above. A Gaussian mixture model must be one of the methods. You are free to choose another method, but make an argument as to why you think it might be useful for clustering this dataset. [1 mark]

c) Give the assumptions of each clustering method. Consider transformations of each variable to try to suit the assumptions of each clustering method. Explain which transformations you  chose and why. Plot the transformed data in each case, illustrating the relationships between variables. [2 marks]

d) For the Gaussian mixture model, use MClust in R or another package offering a similar range of models and methods of model selection.

You will also need to use an effective method to select the optimal number of clusters with each form of clustering. Define the methods of selecting the number of components that you choose for each clustering method and give pseudo-code. [2 marks]

e) Write out the statistical model for both the VVV and the VVE mixture models, as used by the R package MClust, with p variables. [1 mark]

f) Do any countries in either 1952 or 2007 seem like such outliers that you would be better off removing them from the dataset? Explain why/why not. [1 mark]

g) Use each clustering method to select an optimal collection of clusters for the 2007 data.

Then fix the number of clusters (for each method) and use each clustering method to cluster the 1952 data. Plot the resulting clusters from each method at each time point (including a readable form. of country labelling). For the mixture model fit, add a set of contours for each of the weighted components of this fitted mixture distribution. Use the same set of weighted density levels for the contours of each component, except where infeasible. Also present all the estimated model parameters for each model. [2 marks]

h) With respect to your preferred mixture model fit to your chosen variables from the dataset, use a resampling approach to approximate 95% (marginal) confidence intervals for the component proportions. Explain the concept of label switching and why it could be of concern for the production of these confidence intervals. Look for evidence of label switching and explain why you think it was or wasn’t present. [2 marks]

i) Which countries seem to have changed cluster from 1952 to 2007? Give a table of countries that (on your evidence) have changed cluster, including their cluster number at each time. [1 mark]

j) Various categorisations of countries exist, particularly for their level of development. Find one such form. of categorisation, including lists of countries in each category in 1952 and 2007, and compare it to your preferred clustering of the countries in the gapminder data. How do you account for any differences? Note that you will need to research the basis for thecountry categorisation and explain this as part of your answer. [3 marks]

Notes:

• Your main response to the questions should consist of a single .pdf file, submitted by the relevant link for this assignment on Blackboard. You may use other software prepare your document, but the submitted file must be in .pdf format and contain all your answers. The assignments will be marked via Gradescope, and you will need to allocate pages to question parts.

• You should not include any raw output from software except figures and these should have a title, axis labels, a legend where appropriate, a caption, a figure number and be referenced by the figure number at least once in your report text. Any other output should be manually processed/selected before being included in e.g. text or tables.

• All your code and any supplementary files should be submitted via a separate .zip file to a second link for this assignment, also on Blackboard. No code should be included in the .pdf file. All code should be written in R or Python and be readable via a text editor.

• Name your files e.g. student_number_STAT3006_A2_report.pdf and student_number_STAT3006_A2_supp.zip to assist with marking.

• As perhttps://my.uq.edu.au/information-and-services/manage-my-program/student- integrity-and-conduct/academic-integrity-and-student-conduct ,

you must submit work that you prepared. Even where working from sources, you should endeavour to write in your own words. Equations are either correct or not, but you should use consistent notation throughout your assignment and define all of it.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图