代写REDUCTION TO AN AXIOMATIC SYSTEM调试Haskell程序

REDUCTION TO AN AXIOMATIC SYSTEM

EXAMPLES FOR STUDY & PRACTICE

1. a) Prove in general that for any R-valued X with EX2 < ∞, it follows that   (EX)2 ≤ EX2.

b) For any R-valued X with (EX)2 < EX2 < 1, prove that there are unique scalars |a| < 1 and 0 that   X = a+bZ w. EZ = 0, EZ2 = 1.

c) Given properties i), ii) and iii) exactly as presented in defn.0.0.1 on p.4, verify that it is exactly equivalent to replace iv) as therein stated by

iv)' continuous: Zn ≥ 0, n = 1, 2,...

2. some technical loose ends

a) For S =  as in Lemma 0.0.2, p.11, verify that

b) Verify Eqn.(11) p.16, that it is actually true that any non-negative random variable Z may be expressed as the supremum of all the non-negative simple functions below it:

c) Verify the last part of Thm.0.0.2 pp.18-19, that EaX = aEX.

3. classical expectation was ever the modern object

Suppose, as in question 3 of Chpt.2, p.57 (but here in slightly di↵erent notation), for any X ≥ 0, we simply define

thus to find that, therefore, EX is actually the riemann integral

a) Show that ES = ES  S ∈ S.

b) Verify as well that 0 ≤ X ≤ Y 0 ≤ EX ≤ EY.

c) Hence demonstrate how it is that for any X ∈ R+ we will automatically come to the fully modern result

4. lebesgue’s linear space L

a) Prove that for X, Y ∈ L : X ≤ Y EX ≤ EY .

b) Prove that |X| ≤ Y, Y ∈ L X ∈ L.

c) Show that ||X|| = E|X| defines a (pseudo)-norm on L.

d) Verify that |EX| ≤ E|X|, and describe the circumstances for equality.

5. lebesgue’s linear space L, (cont’d)

a) Prove that X ∈ L E|X|I(|X| > n) → 0 as n → 1.

b) Prove that X ∈ L nP(|X| > n) → 0 as n → 1, but the converse is false.

[Note: It might be useful to know that the derivative of lnln x is 1/x ln x.]

6. R-valued functions of abstract random variables

given 

a) 

b) 

7. SLLN (L2 version): (Xi, i ∈ N) IID X w. 

a) Prove that for Z ≥ 0, we do indeed have it that

b) Hence verify the identity   




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图