代写GEOMETRY OF DATA代写数据结构语言

GEOMETRY OF DATA

EXAMPLES FOR STUDY & PRACTICE

1. One-sided chebyshev: For Z ∈ L2 with EZ =0& varZ = 1 verify that, for any t ≥ 0:

P(Z>t) ≤ 1/(1 + t2).

There are at least three di↵erent ways to arrive at this result:

(a) Hint: Z>t (Z + s)2 ≥ (t + s)2 s > 0. Apply markov.

(b) Hint: t − Z ≤ (t − Z)I(Z ≤ t). Apply cauchy-schwarz.

(c) Hint: (1 + t 2)2I(Z>t) ≤ (tZ + 1)2.

2. wP1-equality

For any X R we say that iff P(X = Y ) = 1.

(a) Verify that is an equivalence relation on R.

(b) Verify

(c) Verify

(d) Verify

3. Verify that, in L2, P is an orthogonal projection (onto W = JmP)

if and only if

it has the following three properties:

and, in particular, on Rn, P is an orthogonal projection

4. For an orthogonal projection, P, with P +Q = I, verify that

Use this result, or otherwise, to verify that

from which we have the special case of pythagorus

5. For nested sub-spaces V < W in L2, if Q is the orthogonal projection onto V, while P is the orthogonal projection onto W, verify that

6. Suppose that X ~ bin(2, 1/3), Y ~ poisson(2/3) and X Y .

a) Given that , determine k.

b) Determine the ratio ||X−Y||/||X−EX||.

c) Determine the coefficient of correlation ρ(X−Y,X+Y ).

7. Suppose that X ~ N(1, 1), let Y = X3, and consider the simple

linear model

Y = α+βX + W w. EW =0= ρ(X,W).

a) Evaluate the constants α and β.

b) Determine the relative proximity of Y to its closest linear predictor

8. Let X ~ exp (1), Y = e−X, and consider the simple

linear model

Y = α+βX + W w. EW =0= ρ(X,W).

a) Evaluate the constants α, β and γ.

b) Determine the relative proximity of Y to its closest linear predictor




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图