代做MGEC45 Sports Data, Analysis and Economics Winter 2025代做留学生SQL 程序

MGEC45

Sports Data, Analysis and Economics

Winter 2025

Course Description:

This course uses different empirical strategies to analyse various issues in sports.  There will be a special emphasis on econometric and statistical models to explore strategic questions for sports teams and players across multiple leagues.  The course will conclude with teams of students presenting their own work on sports data with techniques learned in the course.

Course Learning Outcomes/Objectives:

By the end of the course, students will be expected to have a command ofR programming skills, the collection and analysis of data (particularly sports data) with advanced regression techniques to consider causal relationships.  Students will also learn about the frontier of sports economics research. Lastly, the major project will provide students with an experiential learning opportunity that mirrors real-world exercises of data analysts with major sports franchises.

Organization of the Course:

This course will take place in class, and will not include an online component.

Prerequisite(s):

MGEB12H3

Textbook/Required Course Materials:

There is no required textbook for this course, but there will be several readings from different articles.

Lecture Notes and Other Announcements:

The lectures will use PowerPoint files that will be posted on the course website; please download these files for your reference.  In addition, the readings covered in the lecture will be accessible through the University of Toronto’s library website

Evaluation and Grading:

Component

Weight/Value

Due Date

(1) Form. Groups for Week

11 and 12 presentation

2%

Monday, September 15, 11:59 pm

(2) Complete R workshop #1

2%

TBA

Complete by Monday, September 22

(3) Complete R workshop #2

2%

TBA

Complete by Monday, September 22

(4) Obtain approval for Group Project topic

2%

Monday, September 29, 11:59 pm

(5) Meet with Professor to review tentative results for Group Project

2%

Monday, November 3

(6) Problem Set #1

15%

Friday, October 3, 11:59 pm

(7) Problem Set #2

15%

Friday, October 24, 11:59 pm

(8) Problem Set #3

15%

Friday, November 21, 11:59 pm

(9) Group Project

45%

December 1 and 2

Component (1): Form. groups for major project presented in weeks 11 and 12

During weeks 11 and 12, you will present a major data project on a topic involving sports analytics.    This will involve group work, so it will be necessary to form. groups of 4 people relatively quickly, so that planning for the group project can begin as soon as possible.  Once you have formed your group, please send me an email indicating your group members, and you will receive full credit.  If you are   late to form/join a group, you will receive a grade of zero for this component.

Component (2) and (3): Complete R workshop at The Bridge

This course will require you to do a large amount of programming work to complete the problem sets, and the group project.  To assist you with your programming skills in R, I have arranged for The Bridge to run a workshop on R, and completion of this workshop will provide you with full credit for this component.  If you do not attend and/or complete the workshop, you will receive a grade of zero  for this component.

Component (4): Obtain approval for Group Project topic

You will need to obtain approval for your group project’s topic from the professor on or before Monday, September 29.  If you obtain this approval on or before the due date, then you will receive full credit for this work.  If you are late to obtain approval for a topic, you will receive a grade of zero for this component.

Component (5): Meet with Professor to review tentative results for Group Project

You and your group will need to meet with the professor to review the tentative empirical results for  your group project during our class on Monday, November 3.  You must have some empirical results to present to the professor during this meeting to receive full credit for this assignment.  If you do not meet with the professor, or ifyou do not have any empirical results to show the professor, you will receive a grade of zero for this component.

Components (6) through (8): Problem Sets

You will be required to complete three problem sets in the course; these will be submitted through Quercus.  Late penalties are specified later on in this syllabus.

Component (9): Group Project

The major project within the course is a group project that analyzes a major topic in sports analytics by applying econometric techniques learned in the course to original data you collect.  The grading scheme for the presentation will be specified in a rubric that will be provided during the term.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图