代做Problem 2: Sentiment Analysis using ConvNets代做Python编程

Problem 2: Sentiment Analysis using ConvNets (5 points)

ConvNets while renowned for their prowess in image processing,have also demonstrated strong capabilities in handling sequential data such as text.In this problem,you will be applying these principles of CNNs to a classic problem in natural

language  processing  -sentiment  analysis.

Data:

Tensorflow and Keras:The  IMDB dataset,provided  by Keras,contains movie reviews that are labeled as positive or negative.The dataset comprises 50,000 reviews split evenly into 25,000 for training and 25,000 for testing.The data can be loaded using  importing  imdb from tensorflow.keras.datasets with the  imdb.Load data() method with a vocabulary size of 2000.

PyTorch:Use torchtext.datasets.IMDB()from the TorchText library to load the  IMDB dataset(which contains  movie reviews labeled as positive or negative),and then utilize appropriate TorchText processing functions to handle a vocabulary size of 2000

for        tokenization        and         numericalization.

Processing:

Each review in the dataset is already pre-processed and encoded as a sequence of word indexes.A mapping between words and their corresponding indexes is provided using the imdb.get_word_index()method.

For consistent input to the model,your task is to pad the reviews or truncate them to a uniform length.This can be achieved using the pad_sequences method from Keras to convert all reviews to a length of 300 words using the maxlen argument in the pad_sequences method.

Architecture:

The architecture of the convolutional  neural  network  model for this  problem  is  as follows:

1.Embedding    Layer:

Input  Vocabulary  Size:2000  words

Embedding    Dimension:16

Input   Length:300   words

2.Conv1D    Layer:

Filters:128

Kernel         Size:3

Activation:ReLU

Stride:1

Padding:Valid

3.GlobalMaxPooling1D     Layer

4.Dense   Layer:

Units:1

Activation:Sigmoid

Training:

The model should be compiled using the 'binary_crossentropy'as the loss function and'adam'optimizer.Additionally,'accuracy'should be assigned as the main metric.A subset of the training data(1000 samples)should be set aside as a validation set, while the rest should be used for training.The model should be trained for a total of 30(or 10)epochs,with a batch size of 32.After training,the model should be evaluated on the test data to obtain the final accuracy score.This will give a measure of how well the model can generalize to unseen reviews.

Visualization:

Plot the accuracy and loss for both training and validation datasets across epochs to analyze the performance of the model over epochs.

Deliverables:

1.Model Accuracy and Loss Curves:A detailed report of the performance of the model,focusing on accuracy and loss curves.

2.Analysis of Model Performance:A thorough analysis should be conducted to discuss the results obtained from the model.This analysis should include(1)Whether the model overfits or underfits the training data. (2)Examination of the loss and accuracy curves to identify potential indicators of the model's behavior(such as plateaus or sharp changes).

3.Code and Resources:Please make sure to submit your working code fles along with the fnal results and the plots.

4.Bonus(+1)Model Optimization:Consider experimenting with other architectures or hyperparameters to further optimize the model's performance.Discuss the outcomes of your experiments and the effect of different parameters on the accuracy

and loss

Note:Ensure proper spliting between training and validation sets and make sure to shufle the data before training to ensure random distribution.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图