代写Mathematics代做迭代

Let  p  be an odd prime,  K  a finite extension of  \mathbb{Q}_p  with ring of integers  \mathcal{O}_K  and residue field  k = \mathcal{O}_K / p\mathcal{O}_K  (of characteristic  p ). Let  X  be a proper smooth algebraic variety over  \mathcal{O}_K , whose special fiber  X_k = X \times_{\mathcal{O}_K} k  is geometrically connected, and whose generic fiber  X_K = X \times_{\mathcal{O}_K} K  is an abelian variety with complex multiplication (CM).

Let  \ell \neq p  be another prime, and let  \rho: \text{Gal}(\overline{K}/K) \to \text{GL}_{2g}(\mathbb{Q}_\ell)  be the Galois representation induced by the  \ell -adic Tate module of  X_K , where  g = \dim X_K . Assume  \rho  is semisimple and its image is contained in a split torus (i.e., a "potentially abelian" representation).

1. Prove that there exists a crystalline representation  \rho_{\text{cr}}  with Hodge-Tate weights  \{0, 1, \dots, 2g-1\}  associated to  \rho , and that its Fontaine-Laffaille module satisfies specific filtration conditions.

2. If  X_k  is supersingular, show that the eigenvalues of the Hecke algebra action on  H^1_{\text{et}}(X_{\overline{K}}, \mathbb{Q}_\ell)  are in bijection with embeddings of elements of some ring of integers of the CM field of  X  into  \mathbb{Q}_\ell .

3. Using the above results, explain how this Galois representation satisfies the local case of the Langlands program's conjecture relating Galois representations of abelian varieties to automorphic forms over non-archimedean local fields.

This problem lies at the intersection of arithmetic algebraic geometry, p-adic Hodge theory, and the Langlands programcore areas of modern research in number theory. It requires mastery of:

- Fontaine's rings ( B_{\text{cr}}, B_{\text{st}} ) and the classification of crystalline representations;

- The arithmetic of CM abelian varieties and the Galois action on their Tate modules;

- Deep connections between Galois representations and automorphic forms, particularly in local settings.

 

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图