代写BUAN 244: Business Analytics – Summer 2025代做留学生SQL语言

BUAN 244: Business Analytics – Summer 2025 (CRN: 21275)

As of 6/20/2025

Recommended Texts

1.    R for Data Science – Hadley Wickham & Garrett Grolemund, 2017.

Click here to access this freely available textbook.

2.    Introduction to Data Cleaning with R – de Jong and van der Loo

(Statistics Netherlands, 2013). Click here to access this freely available manuscript.

Software This course will use R, R Studio, and Tableau. Installation guides will be provided.

Course Description

This course introduces data visualization, emphasizing how data should be explored to reveal unexpected patterns, trends, and anomalies. Information will be leveraged to generate  information for business problems, develop new perspectives,  and provide actionable insights for business decision-makers. An exploration of data sources, cleaning and transformations, and storage will be conducted. (ETL) Using visualization techniques, stored data sets can be prepared to provide  insights, answer questions of interest, and assist in enabling value-delivering actions. The course will include implementing data analysis and visualization through hands-on programming using R and Tableau. Even though the software will be used extensively, this is not a software training course. The focus is on understanding the underlying methodology and best practices for data management, exploratory and descriptive analyses, and developing techniques for creating stories for the domains of interest.

Course Learning Goals

Upon completion of this course, students will:

A.  Gain hands-on experience with business analytics software.

B.  Criteria:  R and Tableau Projects, Proficiencies Evaluations, and Integrative Evaluation

C.  Be able to apply the skills from this class in your future career.

D.  Integrated evaluations will be performed via assigned data sets.

During this course, students will learn:

A.  Extract, transform, and load (ETL) data using a platform. (e.g., R).

B.  Create interactive dashboards via a platform. (e.g., Tableau) that can be used for business decision-making.

C.  Gain hands-on experience with business analytics software.

D.  Critical thinking skills in the usage of data visualizations in a business context.

Course Schedule

     

**** Please note that content and class schedule are subject to change at the course instructor's discretion. Any changes will be announced during class and posted to the Coursesite in the Course Information Section.

Assignment Due Dates

•     Homework #1 (7/10)

•     Homework #2 (7/15)

•     Homework #3 (7/17)

R Practical Exam (7/22)

•     Homework #4 (7/31)

•     Homework #5 (8/5)

•     Homework #6 (8/5)

Final Project (8/7)

Final Exam (8/9) (8:00 ~ 11:00 am)

Note: All Activities are to be completed independently; please see the course and GenAI policies below

Course Policies for Submissions

My late submission policy allows you to submit the assignment two days past the due date. A point deduction will apply for late submissions. After three days, the submission box will be closed, and missing assignments will receive a score of 0. Any variances, accommodations, or extension requests must be approved one day before the due date. No accommodations or extensions will be granted after this time. If you have any questions about an exam or assignment grade, you must raise them within three days of posting the grade; after four days, all grades are considered final, and no further discussion will be entertained.

Course Evaluative Criteria

Note: The Activities* and Points* are subject to change without prior notice.

Course Activities

Participation and Homework Assignment: [~55%]

A) Worksheets - Participation:

In-class activities demonstrate student knowledge and critical thinking skills related to the course content.   Five worksheets are to be completed as an in-class assignment. There are no make-ups for these assignments.

B) Homework Assignments:

Students will complete six homework assignments to reinforce their understanding of various concepts and tools related to the course content. Details will be provided with each assignment.

C) Semester Project:

The objectives of the assignment are to assess your ability to (1) apply Tableau skills covered in class to analyze a new dataset and (2) perform. independent research to fill in gaps in the analysis to answer real-life business questions.

More details will be provided when the project is assigned. Due Date (8/7)

Exams: [~45%]

D) The R Practical Exam will consist of a visualization theory evaluation (14 points) and an R coding assignment completed in class (16 points).

E) The final Tableau Practical Exam will be given during the course's scheduled final examination period.  Your analytic and visualization skills will be evaluated via Ad Hoc Analytics requests.

Make-up exams: Make-up exams will generally not be given. Exceptions are granted at the  instructor’s discretion and typically reserved for extreme circumstances, such as documented hospitalization or an excused absence note from the Dean of Students’ office recommending the privilege. If a student can take a make-up exam, the instructor may substitute an alternate exam with different content. Students may find the make-up exam content more challenging than the original. Therefore, it is in a student’s best interest to attend each exam at the scheduled time and take it with the rest of the class.

Exam format:  Exams will be “Open Book," but you may only use the materials from this class (BUAN 244) available on the Course Site. Sharing information or utilizing other collaborative resources (e.g., message boards, email, text messages) will violate Academic Integrity. AI tools may not be used to complete the R Practical Exam or the Final-Tableau Practical Exam.

Course Grading Scale

The following conversion table will be used to assign letter grades at the end of the semester.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图