代写PHYC10003 Physics 1 Semester 1, 2016代做留学生Matlab程序

PHYC10003

Physics 1

Semester 1, 2016 Assessment

Question 1 [ (2+2+1) + (2+2+1) + (2+3+3+2) = 20 marks]

(a)      Newton’s 2nd  law can be written F = ma or  F= dp/dt.

i.      Show that both of these equations are equivalent. Outline your reasoning and assumptions.

ii.      State the name and explain the meaning of the type of frame in which Newton’s laws are directly applicable.

iii.      How much work is done by the net force on (or by) an object moving in uniform circular motion?

(b)     An Airbus A380 jet of mass 3 × 108  kg is cruising at a constant speed of 200 m/s, heading due east. A bird is also flying due east at 1.0 m/s directly in the path of the  jet. The bird is 30 cm   long, and has a mass of 1.0 kg.

After the collision, the pilot notices that the bird appears to be squashed flat and stuck to the front of the airplane.

(i)       Show that it takes less than 2 ms for the airplane to squash the bird.

(ii)     Calculate the average force exerted by the airplane on the bird during this time period.

(iii)    State the average force exerted by the bird on the airplane during this time period.

(c)      A student, Benedict, is competing in a race across an open rectangular field. He finds it hard to run in a straight line, and his displacement from the start at (0,0) is subsequently given by

where t denotes time.

i.      What is the magnitude of his displacement from the start after 10 s?

ii.      The magnitude of his displacement after 10 s is not equal to the magnitude of the distance

he covers in that time. Which is greater? Give reasons for your answer.

iii.      What is his speed at t = 10 s?

Another student, Beatrice, starts at the same time. Her displacement is given by:

iv.      Write down Benedict’s displacement relative to Beatrice in (i, j) notation.

Question 2 [3+ 3 + 1 + 2 + 3 + 3 = 15 marks]

Shown below is a graph of potential energy versus Δx, the separation of two  atoms which could be brought together to form. a molecule. As the atoms are brought closer together, the potential between the atoms can lead to bonding.

a)   Sketch the force F between the atoms as a function of the separation Δx. Clearly label your axes and

also include a label stating the relationship between F, the potential energy and the separation.

b)   Indicate the region(s) of Δx which represent where the force between the atoms is

i)    repulsive and

ii)   attractive.

c)   Estimate the value Δx for maximum bonding to occur in this molecule.

Alexandra is conducting a gravity experiment in the lift (elevator) of a tall building with her partner Lee. She asks Lee to stand on a weight measuring scale which has been calibrated in newton, not kilogram.  They travel between several floors non-stop and the journey takes about 20 seconds. Graphed below are  the readings obtained from the scale during this journey.

When the lift begins to move, the reading on scales changes significantly and then settles down to a steady value, until they approach the destination floor where once again it changes.

d)   From the graph, determine Lees mass.

e)   What is the maximum magnitude acceleration of the lift in the first 6 seconds ofthe journey ?

f)    In which direction is the lift travelling (up or down)? Explain the reasoning behind your answer.

Question 3                                                                             [ (2 + 3 + 2) + (1 + 2 + 3 + 3) = 16 marks]

a)   Consider the pulley which is attached to the roof by a bar as shown in the diagram. Two masses m1  and m2   are suspended by rope from this pulley.

Note: There is no friction preventing the pulley from turning and that the pulley, bar and connecting ropes may be considered massless.

DATA: m1 = 3.0 kg, m2  = 6.0 kg

i.      Draw a free body force diagram for each of  the masses. Use T for the tension in the rope between the two masses.

ii.      Calculate the tension T in the rope and the accelerations a1 and a2  of the masses m1 and

m2 respectively. Show your working.

iii.      Calculate the tension the bar connecting the pulley to the roof beam. Show your reasoning.

b)   A box of mass m is being pulled along a flat surface by a constant force, F, as shown. The force

makes an angle θ to the horizontal. Assume that the force is not sufficient to ever lift the box off the surface and that the surface is frictionless.

i.      Write an algebraic equation for the acceleration of the block.

ii.      Write an algebraic equation for the normal reaction between the box and the flat surface, N.

The box is now sliding on surface with a coefficient of kinetic friction, μ between the box and the surface.

iii.       Show that the acceleration a“  is now given by the expression

iv.      Show that the maximum value of a , for a constant value ofF occurs when tanθ = μ . (Hint: use calculus

Question 4 [3 + 2 + 2 + 3 + 4 = 14 marks]

A young student is swinging in a circle around a vertical pole on the end of a 10 m rope, as shown in the diagram. The motion of the student traces a circle in the horizontal plane.

a)   Sketch and label the physical forces acting on the student (use a free-body diagram).

b)   Assuming the student has a mass of 50 kg, calculate the tension in the rope.

c)   Calculate the centripetal force acting on the student.

d)   Calculate the students speed.

Consider now the more general case, where the angle of the rope with the vertical is θ, the student has a mass of m kg and the length of the rope is l .

e)    Show that the speed is given by

Question 5 [5 + 2 + 3 = 10 marks]

A thin rod of mass Mrod  = 50 g and length L = 20 cm is attached to a small motor and rotated about one end as shown in the diagram below. Each complete revolution takes 6 seconds.

a)   Show using calculus that the moment of inertia of the rotating rod described above is MrodL2 /3.

b)   Calculate the angular momentum of this rotating rod.

Now consider the case when the rod is rotated about an axis, a distance %L from then end ofthe rod, as shown below.

c)   Find or derive, in terms of Mrod  & L, an expression for the moment of inertia of the rotating rod.

Note: The moment of inertia of a thin-rod rotated about its centre-of-mass is MrodL2 /12. (You may use the parallel axis theorem in your answer.)

Question 6 [ 2+ (1 + 1 + 1) + 2 + (3 + 2) + 2 + 1 + 2 + 2 = 19 marks]


Mirrors are placed 35,000 m apart on either side of Lake Eyre. A light source/detector combination is placed at the mid-point between the two mirrors  at the  origin  of the  stationary reference  frame.  as illustrated in the accompanying figure. At time t = 0  in the stationary reference frame a light pulse is emitted from the light source.

(a)      State the principle of simultaneity.

(b)     In the stationary reference frame find the space-time coordinates of the events:

(i)      Light pulse arrives at Mirror R,

(ii)     Light pulse arrives at Mirror L.

(iii)    Light pulses arrive back at Detector (after having reflected from mirrors).

(c)     Are  the  two  events, light  pulse arrives at mirror  R and light  pulse arrives at mirror  L simultaneous in the stationary reference frame? Explain briefly.

At time t = 0  in the stationary reference frame Speedy Duck happens to be flying past from left to right at a speed of 6.00 × 107 m.s-1 . Speedy Duck is at the origin of her reference frame and at time t, = 0 the light source/detector is passing her position. (Lake Eyre, the mirrors and the light source/detector are moving from right to left at  6.00 × 107 m.s-1    in  Speedy Duck’s reference frame.)

(d)     In Speedy Duck’s reference frame what are the space-time coordinates of the events:

(i)      Light pulse arrives at Mirror R,

(ii)     Light pulse arrives at Mirror L.

(e)      Conceptually, why do you expect the event light pulse arrives at mirror R to occur before the event light pulse arrives at mirror L in Speedy Duck’s reference frame? Explain briefly.

(f)      In  Speedy Duck’s reference frame, after reflecting  from the mirrors the two light pulses arrive back at the light source/detector simultaneously even though the events described in part (e) are not simultaneous. Briefly explain how this is possible.

In the Stanford Linear Accelerator electrons are accelerated to a final energy of 4.0 × 10-9 J .

(g) Find the value for and the corresponding momentum of the electrons?

Astronomical Data:

Body

Mean radius of orbit (m)

Period

Mass(kg)

Mean Radius (m)

Moon

3.84×108 (from Earth)

27.3 days

7.36×1022

1.74×106

Earth

1.50×1011

1.00 y

5.98×1024

6.37×106

(a)     By equating the weight force at the surface of the moon to the corresponding gravitational force show that the gravitational acceleration at the surface of the moon is !m""n   = 1.62 !. s -z .

(b)      A Cuban professional volleyball player named Leonel Marshall is reported to have a vertical leap of 1.27m from a standing start.     How high could he leap on the Moon? (In answering, you may neglect the effects of air resistance on Earth (and on the Moon too!))

More Astronomical Data:

Body

Mass(kg)

Mars

6.39×1023

Phobos

1.07×1016

(c)      Phobos is one of the moons of Mars. It is closer to its primary (the planet around which it orbits) than any other planetary moon in the solar system. The radius of its orbit is r = 9.38× 106 m (6000 km above the surface of Mars). Find a value of the orbital period of this fast moving little moon. Express your answer in hours.

Question 8 [(3 + 2) + (2 + 3) = 10 marks]

(a)     A simple pendulum hangs from the ceiling of a lift (elevator). For each of the following situations state whether the period of oscillation will increase, decrease or remain the same compared to the  lift being stationary. Briefly justify each of your answers.

(i)      The lift accelerates downward at 5.0 !. s -z .

(ii)     The lift moves downward at a steady speed of 5.0 !. s -: ..

(b)     A pan containing beads is mounted on a spring and oscillates vertically in simple harmonic motion as shown in the following figure.


(i)      Starting with the equation for the displacement versus time, x (!) = ! cos‘ut + !,, show

that the magnitude of the maximum acceleration of the pan is given by !m"x = z!.

(ii)     If the frequency of oscillation of the pan is 25 Hz find the amplitude of the motion at which the beads will start to lift-off from the pan.

Question 9 [ 1 + 1 + 2 + 3 + 2 = 9 marks]

The figure shows a position versus time graph for a particle of mass 80 g, suspended from a spring, oscillating in simple harmonic motion. Find values for the following quantities:

(a)      The amplitude,

(b)      The period,

(c)      The angular frequency,

(d)      The phase constant,

(e)      The spring constant.

Question 10                                                                   [ (3 + 4) + (3 + 3) + (2 + 3) = 18 marks]

(a)      Fi is an opera singer and a bit of a  dare devil. He likes to base jump (jump off buildings, cliffs etc with a parachute). He jumps from the top of a building and free-falls vertically away from his dog Do. While he is in free-fall Fi constantly sings a note of B-flat (466.16 Hz).

(i)      Briefly explain in the context of the Doppler effect what Do will hear while Fi is in free-fall.

(ii)     How fast will Fi be falling when Do hears a note ofA= 440 Hz? Assume that the air temperature is 20。c.

(b)     The African Cicada, Brevisana Brevis, has been measured to produce a sound level of 106.7dB at a distance of 50cm from the source.

(i)            What intensity does this sound level correspond to?

(ii)           What is the power at the source (assuming the cicada is a point source of sound)?

Potentially Useful Information:

(c)      Opposite walls of a shower cubicle are parallel and 1.3 m apart. With the aid of diagrams find:

(i)      the wavelengths ofthe 1st (fundamental) and 2nd harmonics for standing sound waves in the cubicle, and

(ii)     a general formula for the frequencies of the standing waves.

(a)      A scientist wants to design a reflection diffraction grating so that for normal incidence of red laser light, λ = 632.8nm , the first order, m = 1 , maximum occurs at an angle of 33。. Find the required groove spacing, d .

(b)     A fibre optic cable has a core with a refractive index of 1.44 and a cladding with a refractive index of 1.43. For light incident on the end of the fibre as illustrated in the figure what is the maximum value of θ1   for the light to be guided in the fibre?

(c)        A camera is equipped with a convex lens of focal length 10.0 cm.

(i)            If a person is 3.0 m from the lens, what will the image distance be?

(ii)           If the person is 1.5 m tall, what is the image height?



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图