代写Solid mechanics Project Description代写Processing
Hello, dear friend, you can consult us at any time if you have any questions, add

Project Description

It is now three weeks since the commencement of your role as a Mechanical Asset Engineer, and you   are ready to embark on your first integrity assessment project in the plant. The integrity inspector calls for an urgent meeting to which you are invited. During the meeting you learn that the skirt’s thickness  of a vertical pressure vessel (V2-1979) has decreased substantially. The pressure vessel (V2-1979) is    located at the beginning of the production line, and its overhaul comes with a huge financial loss that the management team is attempting to avoid. The V2-1979 vessel consists of a 4.2 meter cylindrical support (skirt), two ellipsoidal ends, and a 30m shell. Figures 4, 5, and 6 show the full vessel supported with skirt, the shell with ellipsoidal heads without the skirt, and the shell cross section, respectively. Figures 7, 8 and 9 depict the 3D view of skirt with refractory bricks and manhole, along with a cross-sectional view. A complete CAD drawing is available at the end of Part 1 of the assignment to assist you in developing the model. The skirt, which acts as a supporting structure, is typically attached to the bottom of the vessel through a circumferential weld. In our case, the joint weld efficiency is 100%, ensuring that this connection provides stability and evenly distributes the  load.

The integrity team engaged a contractor to perform. a 3D laser scan of the entire circumference of the skirt for the first meter from the ground. The results are displayed in Figures 1, 2, and 3. For this purpose, the refractory bricks, which provide fireproofing protection, are removed both internally and externally from the skirt so that the actual carbon steel plate can be accessed for thickness measurement.

Think of the skirt as a thin cylindrical plate covered by refractory bricks for fire isolation. The issue is that the thickness of the actual carbon steel plate beneath these bricks is decreasing, necessitating the   removal of the refractory bricks to take accurate thickness measurements. The laser scan method offers a more robust thickness measurement compared to traditional UT techniques; however, it is still prone to inaccuracies. According to the contractor who conducted the measurement, a tolerance of 1 mm must be considered when using the data. As shown, these 3D thickness surveys include contour plots on the right-hand side, indicating the measured thickness. The thickness of several red zones has  been marked for reference. To gain a better understanding and analysis of the data, one can map each   zone with the contour to understand the corrosion pattern more comprehensively.

Wind and Seismic Loading, The vessel is exposed to the wind force as well as the seismic loading. However, according to AS1210-2010, their cumulative effect must not be considered. In other words, between seismic loading and wind force only one with a greater value should be taken as the bending moment. You have access to an old wind and seismic load calculation performed by a former contractor using PV-Elite software. According to this report, the wind force and seismic load produce bending moments with magnitudes of 3133 [KN.m] and 4008 [KN.m] around the skirt, respectively.  However, the problem with this data is that it cannot be verified due to the contractor’s refusal to supply a detailed calculation report, and you have only access to the final results of their calculation. Thus, it is up to you whether to trust these bending moment data (provided by the former contractor) or to recalculate the wind and seismic bending moments from scratch. Should you decide to recalculate these external bending moments due to wind and seismic forcing, refer to the relevant Australian Standards (AS-NZS 1170.2-2002 & AS-NZS 1170.4-2002 ) uploaded on LMS.

Alternatively, you can use the guideline document (also uploaded on LMS) that provides a different method for computing wind & seismic load based on the Pressure Vessel Handbook (Megyesy, 2001b).

About V2-1979, Originally designed in 1977, fully fabricated in 1978, and installed onsite by 1979. The vessel contains a mixture of Liquefied Petroleum Gas (LPG) with a density around 490kg/m3.

According to the available drawing of V2-1979, the nominal thickness of the skirt is 16mm. However, one of the most experienced engineers of the plant who had been involved in the manufacturing of the vessel tells you that the nominal thickness is around 24mm. While the original thickness at the time of fabrication remains unclear, the current thickness measurements ofthe skirt are available (as shown in Figure 1, 2, and 3.)

Part A

Questions that you need to answer in your theoretical analysis.

[a] Determine all the stresses that are acting on the shell and its support (the skirt). Draw a free body diagram for all components of the vessel.

[b] Calculate all the stresses identified in the previous part. Tabulate your final answers in SI units.

[c] Make a comparison between the hoop and longitudinal stress at different sections of the vessel. Explain which one is greater in each section. Why?

[d] Suppose the vessel is empty. Redo part a to c. Assume the hydro-test condition (the vessel is filled with water). Redo part a to c. Compare and contrast the results. What is the main difference?

[e] What is the minimum acceptable thickness of the skirt under the operating condition of the vessel? Assuming no significant change in the operating condition, how the skirt’s thickness will change in the next 15 years. Plot the thickness reduction trend as a function of time (year). Show all the steps clearly, and state any assumptions made.

[f] What is the minimum acceptable thickness of the shell, top and bottom heads? Plot the cumulative  hoop and longitudinal stress as a function of thickness for each component and explain the position of the minimum thickness point on the graphs, what do they physically mean?

[g] As a result of wind, the V2-1979 vessel develops vibration. What is the maximum allowable period of vibration? Is the vessel safe from a vibration point of view? (Hint: Use the guideline document on LMS to find the relevant formula).

[h] Your senior suggests that this pressure vessel was not stress-relieved during manufacturing. How does this impact your analysis? How can you confirm if this claim is true? What changes would you  make in your stress analysis, and what is the path forward? (2 marks)

[i] If you were to introduce thermal stresses, how would that change your theoretical analysis?

[j] Suppose the initial thickness of the skirt is 12mm. How would that change the remnant life of the vessel?

[k] List any relevant sources of error that could have impacted your calculation.




Part B

The full configuration of a horizontal pressure vessel with hemispherical end caps is shown in Figures 10, 11, 12 and 13. All dimensions are provided in the figures, except the wall thickness, which is 20 mm. All components are made of steel with yield strength, σy = 620 MPa, Young’s modulus E =  210GPa, Poisson’s ratio, µ = 0.29, and density, ρ = 7800kg/m3 are welded onto the cylindrical pressure vessel. 1. (Analytical Study) Questions that you need to answer in your theoretical analysis:

[a] Determine the yield pressure if the pressure vessel is considered to be thin walled.

[b] If it is not considered thin-walled, determine the yield pressure. Is the difference between this and  the yield pressure determined using the thin-walled assumption (part 1) significant? [c] As pressure is increased beyond the initial yield point, more and more of the wall of the pressure vessel will yield. Determine the pressure required to yield the vessel to 5mm.

[d] Assuming the steel becomes perfectly plastic after yield, determine the residual stress in the pressure vessel walls.

[e] A thick-walled pressure vessel of similar dimensions to that considered here has been sent to the surface of the planet Venus as a container for automated expedition equipment. Sufficient time has   elapsed such that the vessel has expanded due to the high temperatures on Venus. The vessel is now exactly the same dimensions as that given in the figure below. (Ignore any stresses due to thermal expansion and any other temperature-related effects). A valve is then opened and the pressure inside   the vessel equalizes with the atmospheric pressure on Venus. Calculate the hoop stress in the walls of the pressure vessel and clearly state your assumptions and/or relevant data sources.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图