代写Remote-sensing, a technological innovation of geography science代写Processing

Remote-sensing, a technological innovation of geography science

Earth science, also known as geoscience, is the systematic study of the Earth's structure, processes, and history. This subject explores the physical composition, chemical dynamics, and biological systems of the Earth. It involves phenomena ranging from plate tectonics and resource distribution to natural disasters such as earthquakes and volcanic eruptions. Remote sensing, as an emerging technology, has formed a close and complementary collaborative relationship. Often referred to as the "eye of the sky" of Earth science, remote sensing provides multi-scale, multi- temporal, and multi-spectral observation capabilities. In turn, Earth science lends remote sensing data geoscientific significance, driving its transformation from "data" to "knowledge." Through high-quality data, remote sensing promotes earth science  research from local to global and from qualitative to quantitative. This article will explain the technological innovation of remote sensing and describe three applications of this technology: natural hazards analysis, mineral exploration, and monitoring water quality. Finally, the article will evaluate the benefits and limitations of this revolutionary innovation.

The development of remote sensing technology has a long history, which reflects continuous technological innovation and breakthroughs. Rebecca (2019) points out that since Nadal photographed Paris with a hot air balloon in 1858, remote sensing has undergone a transformation from simple carriers such as pigeons and kites to systematic aerial photography. The First World War gave birth to military aerial photography, while the Cold War promoted the development of high-altitude reconnaissance platforms and advanced sensors, allowing remote sensing to achieve a leap from tactical reconnaissance to global observation. Arthur (2019) mentions that 1978 was a significant year in terms of satellite data sources for different applications because several new satellites with advanced instruments appeared. These satellites introduced important sensors for the first time, and the launch of Landsat 3 in the same year further expanded the land remote sensing data source. At that time, polar-orbiting satellites and geosynchronous satellites had established a mature data source for meteorological applications. In the late 20th century, artificial satellites such as Landsat and Nimbus enabled remote sensing to enter a multi-band, all-weather, and global stage. Subsequently, innovations in hyperspectral sensors, high-resolution imaging, and digital image processing have greatly improved our ability to identify objects and monitor the environment. In the 21st century, remote sensing technology has been deeply integrated with GIS, big data,and artificial intelligence. With the help of drones,satellites such as Sentinel , and cloud platforms like Google Earth Engine,remote sensing has achieved more efficient 、intelligent 、and extensive applications,becoming an important tool to support global decision-making. Modern remote sensing relies on advanced satellite platforms (such as Landsat and Sentinel) and UAV systems, equipped with multiple types of sensors, achieving high-resolution imaging of multiple bands such as visible light, infrared, microwave, radar, etc. It not only can obtain multispectral and hyperspectral data but also supports multi-source information such as radar (SAR) and laser radar (LiDAR). At the same time, the temporal and spatial resolution of modern remote sensing has been significantly improved, enabling daily and even   higher-frequency dynamic monitoring. These advances mark that modern remote sensing has transformed from early static image acquisition to an intelligent, dynamic, and integrated means of Earth observation.

The operational framework of remote sensing is transforming selectromagnetic energy interactions into actionable geospatial intelligence through integrated sensor- to-analysis systems. In terms of Earth date(n.d.), simply put, remote sensing is to "see" things from a distance and collect information. How does NASA study the Earth and other planets? They use satellites, spacecrafts,and airplanes in space— these carriers are equipped with special "eyes" (remote sensing equipment) that can capture energy signals reflected or emitted by targets. According to Geogyan (n.d.),  first, sunlight (or other energy sources) hits a target area (such as a piece of land). Objects on the ground (such as water, vegetation, and soil) reflect, absorb, or re-emit this energy. Then, sensors installed on satellites, drones, or aircraft are responsible for capturing this reflected or released energy and turning it into digital data. Finally, this data is transmitted back to the ground station and processed by computers into maps or pictures that we can understand. In the end, scientists can use this data for   interpretation and analysis in many applications. After processing—classification— and visualization,or combined with other platforms or technologies,the collected data can become a key tool for managing and understanding the Earth system.

After a long period of development, remote sensing has gradually become a mature technology. Today, remote sensing is well-developed in many countries with their own guidelines and maintenance but similar structures. In the next section, three applications of modern remote sensing will be given and analysed.

The first application of remote sensing pertains to water quality monitoring, which encompasses several key aspects: the estimation or simulation of water quality parameters using spectral information; the identification of remote sensing technologies and products applicable for water quality assessment; and the integration of suitable machine learning techniques (Shashank et al. 2025). According to Mohit et al. (2024), primary factors influencing water quality include algae proliferation, turbidity levels, dissolved organic matter content, specific chemicals, pathogens presence, aquatic vegetation growth, and oil contamination. These variables alter the energy spectrum of radiation reflected from or emitted by the surfaces of ponds, lakes, and rivers. Such radiations are subsequently measured utilizing various satellite sensors. The accurate quantification of water quality parameters from spectral data necessitates robust algorithmic frameworks, primarily categorized into empirical and analytical models. Empirical models (EMs) employ statistical regression to correlate in-situ measured parameters with optimal spectral band combinations, enabling rapid large-scale assessment. For instance, Zhang (2022) leveraged Sentinel-2 imagery to derive chlorophyll-a (Chl-a) concentrations  across 3,067 global lakes (2019-2021), revealing a positive correlation with surface water temperature. Conversely, analytical models (AMs) simulate light propagation through atmosphere-water systems using bio-optical theory and radiative transfer equations, formally describing the relationship between water constituents and subsurface radiance. This physics-based approach underpins mechanistic interpretation of inherent optical properties (IOPs) linked to water quality dynamics. (Desong et al, 2022)

Remote sensing technology has important theoretical and practical value in mineral resource exploration and can effectively identify geological features such as rocks   and minerals, as well as simultaneously identify mining areas. This essay will describe the features of remote sensing in mineral exploration from two aspects: spectroscopic analysis of surface materials and mapping hydrothermal alteration zones. The first is the application of remote sensing in spectral analysis of minerals. Different minerals, hydrothermal zones, etc., have different spectral response mechanisms. This unique reflection pattern is the "spectral fingerprint" of the mineral. Gregory (2023) demonstrates that the spectral characteristics and curves of different  types of rocks and their mineral content can distinguish the types of minerals in those rocks. For example, Sima Peyghambari and Yun Zhang (2021) state that hydroxyl-containing minerals show obvious spectral absorption in the short-wave infrared radiation region, while sulfates containing OH have characteristic spectral features in this same region. The second point is how remote sensing is used to map hydrothermal alteration zones. Hydrothermal alteration zones—geochemical halos formed by mineralizing fluid-rock interactions—serve as critical exploration proxies. Finding the alteration zone is like finding the "footprints" or "signposts" of mineral deposits because rocks in these zones contain specific mineral combinations that will show regular colour anomalies on remote sensing images. Remote sensing generates a "mineral anomaly map" by focusing on analysing sensitive bands related to these minerals. For example, Pour used multispectral remote sensing images to explore copper-gold mineralization in northeastern Greenland's Inglefield Mobile Belt at regional, local, and detailed scales. They successfully mapped hydrothermal alteration minerals such as iron oxide/iron hydroxide, silicate (Si-OH), and SiO2 mineral groups while discovering several high-potential areas for Cu-Au exploration. (Admin et al. 2021)

The third application of remote sensing—— landslide research generally uses multi- source remote sensing (such as radar, satellite, drone, etc.) to acquire data, and then evaluates key quantitative indicators. First, landslide monitoring commonly uses a combination of these three types of remote sensing: Optical remote sensing uses high-resolution images to identify surface cracks, vegetation anomalies, water changes, and other landslide precursors; radar remote sensing uses microwave penetration to monitor surface deformation (with an accuracy up to millimeter level), which is especially suitable for cloudy and rainy areas; and LiDAR obtains high-precision digital elevation models (DEM) through drones or airborne platforms, penetrating vegetation cover to reveal hidden landslide boundaries and terrain changes. Then data processing and feature extraction can be performed. Second, come to the part of quantitative indicators for assessing hazards. Huiyan et al. (2024) notes that by comparing images of remote sensing over time, changes in vegetation,  surface cracks, or movement patterns can be detected, which may indicate the occurrence of landslides. DEM differences (LiDAR or photogrammetry) can indicate volume changes; digital elevation Models taken before and after a landslide show volume changes, landslide depth, and material flow. NDVI (Normalized Difference Vegetation Index) declines in vegetation health (from satellite imagery) can be an early sign of slope instability or a recent landslide. Martinez et al. (2021) conducted a study to map landslides triggered by the 2018 Anchorage earthquake in Alaska, USA. The researchers combined field data with high-resolution satellite imagery to  identify landslide features. After determining the location of the landslide, they used multiple remote sensing techniques to define the back edge of the landslide landform. Then they evaluate the effectiveness of three remote sensing techniques: LiDAR elevation difference (DEM), Normalized Difference Vegetation Index (NDVI) difference, and Synthetic Aperture Radar (SAR) amplitude change detection.

The application of remote sensing technology in the fields of geological disaster analysis and resource exploration has shown significant value, but a comprehensive evaluation of its effectiveness requires an objective examination of the technical characteristics.

Remote sensing offers significant benefits over traditional survey methods by providing large-scale, real-time data that supports critical applications across many  fields. Firstly, Lisa Barr discusses that the benefits of remote sensing lie in its global view and large-scale coverage. Traditional ground surveys are often limited by time, cost, and accessibility, making it difficult to assess large areas. Remote sensing platforms such as satellites and aircraft can collect data from entire continents at once, giving us a comprehensive understanding of the Earth. This is particularly  important for monitoring large-scale phenomena such as deforestation, melting   glaciers, and urban expansion. Taking the monitoring and governance decision support of red tide disasters in the Yangtze River Estuary as an example, geostationary satellites obtain images of the East China Sea region every 10 minutes, and multispectral satellites complete global coverage every 2 days, and can even accurately extract chlorophyll concentration and water temperature. The staff used 5-day remote sensing time-series images to discover the area of red tide and the precise spread area, as well as the displacement of the polluted area. Additionally, the database can compare images at intervals of five years from 1990 to 2020 (showing time series evolution). Finally, it has driven the country to promulgate the "Yangtze River Protection Law" and contribute to flood control efforts in the Yangtze River Estuary. (Lusan et al. 2013)

Second, another important advantage of remote sensing technology is its dynamic response capability. The authoritative technology platform. Tpointtech proposes that modern remote sensing systems have efficient data collection and transmission capabilities and can support disaster assessment decisions from seconds to hours (near real-time). When responding to sudden environmental crises such as hurricanes, forest fires, and offshore oil spills, the command centre can use high- frequency remote sensing data streams (such as satellite images and drone surveillance videos) to accurately identify key parameters such as the outbreak point, impact range, and degree of damage of the incident. This real-time environmental situation awareness capability significantly improves the capabilities of front-line rescue forces in task allocation, resource scheduling, and operational efficiency; thereby greatly improving the overall efficiency of the disaster response chain. Take Hurricane Katrina in 2005: NASA utilized Light Detection and Ranging (LiDAR) technology to map flood damage in New Orleans. This approach allowed for rapid assessment of water levels and infrastructure damage over a vast area, expediting recovery efforts (Jeff, 2006).

Despite its many benefits, Admin(n.d.) argues that remote sensing has several limitations. High costs associated with data acquisition, processing, and equipment maintenance can restrict its use, especially in developing regions. Accurate interpretation also requires specialized skills, which may not be widely available. Additionally, factors such as cloud cover, haze, and seasonal variations can reduce data quality and accuracy. Limited spatial and spectral resolution in some sensors further constrains the level of detail obtainable, affecting the reliability of results in certain applications. On the other hand, Abudlmohsen(2024) further points out that remote sensing systems based on satellites and manned aerial platforms are significantly limited in their efficiency when managing local construction projects with nonlinear characteristics—such as residential buildings, commercial buildings,and  industrial facilities—due to their low temporal resolution. The smaller the monitoring  target is,the higher the accuracy required for image registration. Low temporal resolution has a substantial negative impact on the analysis of different types of civil engineering problems.

In summary, remote sensing has revolutionized earth science by providing unprecedented multi-scale observation capabilities, enabling the transition from fragmented data to actionable geoscientific knowledge. Its evolution—from aerial photography to AI-integrated satellite constellations—has unlocked transformative applications: quantifying global water quality parameters via spectral analysis, identifying mineral deposits through hydrothermal alteration mapping, and enabling millimeter-scale landslide monitoring. While its global perspective and real-time disaster response offer unparalleled advantages, limitations persist in spatial- temporal resolution, atmospheric interference, and technical accessibility.

Nevertheless, by merging with complementary technologies like GIS and machine learning, remote sensing remains indispensable for understanding Earth systems  and informing sustainable resource management and hazard mitigation strategies worldwide.

 



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图