代做XJEL3430 Digital Communications PROBLEM SET 2

XJEL3430 Digital Communications

PROBLEM SET 2

Problem 1: Vector Spaces

The vector-space concept introduced in class is applicable to many mathematical structures. It will help us visualize these structures by thinking of each member of them as a vector. You have seen the example of 2-dimensional vectors in Problem 2 of PSET 1. Another example is the set of periodic functions of period T, or, those of finite energy. More generally, a set of elements is a vector space if two conditions are satisfied:

-     First, we  must be able to add these to-be-called vectors according to a proper addition” operation. That is, if v and w belong to a vector space V, then v + w also belongs to V ; and

-     second, to scale them, let’s say for now, by complex numbers. That is if v ∈ V, then for any complex number c, cv is also a member of V.

These are the two main properties that we can easily associate with geometric vectors  in the xy plane.

a)   Consider the setV = {all periodic complex functions of time, t, with period 1} . Give/draw two example functions that belong to V.

b)   Show that if f(t) and g(t) are members of V, then so is f(t) + g(t) .

c)    Suppose f(t) belongs to V. For a complex number c, show that h(t) = c f(t) also belongs to V.

d)   Is V with the above addition and scaling operations a vector space?

Problem 2: Inner Products and Projection

We saw in the lecture that one valid choice of an inner-product operation for the vector space V = {all periodic complex functions of time, t, with period 1}, is given by

where vf    and vg , respectively, represent the vectors corresponding to functions f(t) and g(t) in V.

(a) Verify that the functions φn (t) = e2πint n ∈ Z , all belong to V.

(b) Verify that φn (t) = e2πint n∈ Z , are normalized, that is, they have unity length, according to the inner product in (1) .

(c)  Verify that φn (t) = e2πint n ∈ Z , are orthogonal to each other, that is, for  n ≠ m Z , the inner product of  φn (t)  and φm (t) is zero.

(d) Consider functions f (t) = cos(2πt) and g(t) = sin(4πt) . Can you expand these functions in terms of φn (t) = e2πint n ∈ Z  (that is, to write f(t) and g(t) as a linear combination, or, weighted sum of  φn (t) functions) .

(e)  Find the inner product of f(t) and g(t) in part (d) .

Problem 3: Sampling Theorem

An analogue signal, x(t) , with Fourier transform  as shown in the figure below, is the input to an ideal sampler followed by an ideal low pass filter. The ideal sampler takes consecutive samples by a train of Dirac delta functions,  and, at its output, it generates  We can control and change  TS  at our wish. The ideal low pass filter has a bandwidth WLP , which is also controllable. We denote the output of the low pass filter by y(t) , and its Fourier transform is denoted by Y(ω) .

(a)       Is x(t) a bandlimited signal? What is its bandwidth in rad/sec? Denote the bandwidth by W for the rest of this problem.

(b)      What is the Nyquist ratefor x(t) ?

(c)      Suppose  TS  = π/(2W) . Sketch the Fourier transform of xS (t) for  3W  ≤ ω    3W .

(d)      Suppose TS  = π/(2W) and WLP  = W . Find y(t) in terms of x(t) .

(e)      Suppose  TS  = π/W and WLP  = W /2 . Sketch Y(ω) for   2W  ≤   ω    2W . (You do not need to write Y(ω) in an analytical form.)


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图