代写COMP4038 Coursework 2帮做Java编程

COMP4038 Coursework 2 Tips v2024-03-28

A good conceptual model structure for the report looks like this:

•    Brief problem statement

•    Objectives, including specific constraints/requirements {consider defining one for a simulation experiment and one for an optimisation experiment}

•    Any other constraints or requirements {not captured in the objectives}

•    Experimental factors (Inputs) {make sure they are related to your objectives}

•    Responses (Outputs) {make sure they support you to test if you fulfilled your objectives}

•    Content (defining model scope and level of detail) {scope captures all candidate components that could be considered as part of the system (i.e. included and excluded ones); level of detail only considers the components that are within the scope (i.e. included ones) and describes how (at what level of abstraction) these components are going to be considered} {use screen shots of tables to save words} {Scope table requires justification, LOD table comments}

 

•    Assumptions  (facets of limited knowledge or presumptions) {all assumptions (including the Scope and LOD table ones) should be listed here, including a brief justification}

•    Simplifications (facet of the desire to create simple models) {all simplifications (including the Scope and LOD table ones) should be listed here, including a brief justification}

•    Graphical representation and short explanation and justification of design decisions {you might want to represent the process flow of the overall system and some details like classes and state charts for agents etc., whatever is related to the design of your system}

Building a simpler model

•    Your conceptual model can be more ambitious than your actual implementation

o You can state that you are implementing a first prototype of the conceptual model where not everything is considered. If you want to do that, add a paragraph at the  end of the conceptual model section, providing some information of what you are  leaving out.

o Simplifications listed within the conceptual model should relate to the full model rather than the prototype. Simplifications related to the prototype should be listed in the added paragraph.

Objectives

•    Simulation: Objectives must be clear and concise (a short sentence stating the objective and related constraints where appropriate).

Objective: Ensure that x% of customers are served in y minutes, subject to ...

•    Optimisation: Objective includes objective function s.t. constraints (can relate to the

definition of the solution space and for filtering the solutions found). Provide a mathematical formulation with a brief explanation of the objective.

Objective: The optimisation would … so that … while …

Minimise:           Σ …

subject to           a ≤ …

 

where a = number of …, b = …

•    In AnyLogic they are separated into constraints (checked before a run to define the solution space) and requirements (checked after the run to filter the solutions found)

Implementation

•    Make sure your model implementation matches your model conceptualisation (either the full version or the prototype).

•    In the report:

o Please provide a short opening paragraph followed by one (or more) screenshot(s) of your implementation

o If your implementation is very complex, you should just provide a summary of the highlights (the things you are proudest about regarding your implementation).

o If you have written lots of Java code, it would be good if you say a few words about the Java code you wrote, again focusing on the highlights (and perhaps present the pseudocode for the most relevant algorithm(s)).

•    In your simulation model:

o Provide some meaningful graphical representation (diagrams) at least of some of your outputs

•    When you implement your model, please use the following diagram for help 

•    Use AnyLogic Help (tutorials; demo models; example models) before asking us

o For defining shift hours, the Schedule element provided in AnyLogic might be very handy; you can find some help in AnyLogic "AnyLogic Help / Defining Model Logic / Schedules"  and here in particular  "Weekly  Schedule"  to define the  schedule and "Schedule API" to access/change schedule variables.

Experimentation

•    Creating a base case: As we do not have a real world case, you might find it tricky to create a base case (representation the current state of the system) for your simulation experiments. The trick to  run  some  experiments  with  estimated  realistic  data  and  parameter  settings (where realistic means e.g. "time in system" in minutes rather than seconds). Tune data and parameters  until  you  get  a  scenario  that  works   (you  could   use  a   parameter  variation experiment if you want to do it professionally or just trial and error). When you get a scenario that "just" works, break it by changing the parameter settings slightly and you will have a base case of a student service  provider that  is experiencing  some  issues.  If you  only focus on optimisation and are trying to improve a system that is not experiencing any issues, you could skip the last step.

•    Varying arrival  rates: Regarding arrival rates, you might want to allow the user to set it up (this could be overall expected arrival rate per week or so). Future customer numbers are very likely to rise (I am sure you could find some evidence for this online) . One might want to test if the system can cope with these rising customer numbers using current staffing levels.

•    Interactive simulation: Adding sliders to your classes to vary parameters during  runtime:  If you think there is something a user should have control over in the simulation experiment during runtime you could add some sliders; it is relatively straightforward. It depends on if you want to market your model as an exploratory tool or a predictive tool.

•    Number of decision variables:  The PLE edition of AnyLogic only allows 7 decision variables. If you create more, you get an error message when running the optimisation. There are different ways of dealing with this.

o Reduce the number of decision variables

o Use an external optimiser (e.g. HeuristicLab); we will have a look at this on Thursday

o If you like a challenge (I did not try this but my colleague Dario mentioned it as one potential  solution  at  some  point)  you  could  encode  the  solution  as  a  bit  string; different sections of the bit string could represent separate decision variables; this way, a single integer could represent multiple decision variables; however, a decoder would need to be implemented to perform. the conversion from integer to bit string

o If you like an even bigger challenge, implement your own optimiser in AnyLogic

•    Optimisation experiment running slow: If your optimisation experiments are running extremely slow, you might want to consider using a rapid prototype version of your model for running these. It should have relevant functionality for running the optimisation experiments, but nothing else. You can then submit two models - the full version for getting good marks for presentation and the simplified version for allowing to re-run the optimisation experiments.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图