代写Final Project: Regression Analysis帮做R程序

Final Project: Regression Analysis

Overview

This project builds on your understanding of regression analysis and challenges you to apply these techniques to real-world data. The aim is to critically analyze variables, create regression models, and make data-driven decisions while interpreting outputs to draw meaningful conclusions. The final deliverable will include your analyses, insights, and a reflective piece.

Learning Goals and Tasks

Learning Goal 1: Speculating Variable Importance

1a) Which variable in the dataset do you believe is the most important for predicting post-graduate earnings? Justify your choice with real-world reasoning and examples.

1b) Which variable do you believe is the second-most important for predicting post-graduate earnings? Provide a detailed explanation for your choice.

1c) Identify a potential interaction between two variables that could influence post-graduate earnings. Discuss the real-world implications of this interaction.

Learning Goal 2: Simple Linear Regression

2a) Run a simple linear regression using university price as the predictor and average earnings after graduation as the dependent variable. Analyze the output by answering:

i.       Is price significant at the 5% significance level?

ii.       How do you expect post-graduate pay to change with a $1 increase in university price?

iii.       How effective is the regression in explaining variability in earnings? Refer to the R-squared value. Is this value low or high in your opinion? Why?

iv.       Are there any noticeable patterns or issues in the residuals? What do they suggest about your model?

2b) Consider transforming either the predictor or dependent variable (e.g., using logarithms or other transformations). Would this improve the model? Justify your decision based on the data.

2c) Select another variable from the dataset that you find interesting. Run a simple linear regression with this variable as the predictor and average earnings as the dependent variable. Analyze the regression in the same way as in Question 2a, and discuss how this variable compares to university price as a predictor of post-graduate earnings.

i.       Is that variable significant at the 5% significance level?

ii.       How do you expect post-graduate pay to change with a 1 unit increase in your variable?

iii.       How effective is the regression in explaining variability in earnings? Refer to the R-squared value. Is this value low or high in your opinion? Why?

iv.       Are there any noticeable patterns or issues in the residuals? What do they suggest about your model?

Learning Goal 3: Data Preparation and New Variables

Review the dataset and identify opportunities to create new variables. Using techniques such as IF statements, addition, multiplication, or division, construct at least one new variable to enhance your analysis.

3) Describe the new variable(s) you created. Why did you create them? How did you create them? How do they improve the dataset’s usefulness for regression analysis?

Learning Goal 4: Multiple Regression

Build a multiple regression model incorporating at least:

• Two numerical variables.

• One dummy variable representing a categorical variable.

• One interaction term between two variables.

• Your newly created variable.

4a) Assess the quality of your multiple regression model:

i. Is the overall regression significant? How do you know?

ii. Which variables are significant predictors, and what does their significance tell you about their impact on post-graduate earnings?

iii. How well does the model explain the data (R-squared and adjusted R-squared)?

4b) Compare the results of your multiple regression to the simple linear regressions from Questions 2a and 2c. What additional insights does the multiple regression provide? Are there limitations to the model?

Learning Goal 5: University Comparisons

5a) Select your top-choice and bottom-choice universities (excluding USC) when you were applying for college. Search online for their costs and average exam scores, as well as USC’s. Submit those figures for this question, and where you found them.

5b) Using your regression model from Question 4a, predict post-graduate earnings for students from both your top- and bottom-choice universities.

5c) Compare these predicted earnings to the predicted earnings for USC students. Are the predictions consistent with your expectations? Explain why or why not.

5d) Reflect on the results. What do these predictions suggest about the factors influencing post- graduate earnings? Are there any surprises in your findings?

Learning Goal 6: Reflection on Strengths and Preparation for the Future

6a) Reflect on your personal strengths in completing this project. What aspects of the project came naturally to you? What are you most proud of in your work, and why?

6b) Identify areas where you feel you could improve. Were there any specific parts of the project that felt particularly challenging or tedious? How might you overcome these challenges in the future?

6c) Consider how this project has prepared you for future job opportunities. How did working on this project help you think about using data to solve real-world problems? How will you communicate your strengths and the skills you demonstrated in this project to future employers?

Deliverables

Report: A written document with the following points. It should be written narratively, like a journal article, addressing the points above.

1.   Answers to all questions above, including detailed justifications and analyses.

2.   Clear presentation of regression outputs, residuals, and any transformations made.

3.   Visualizations to support your findings, where appropriate.

4.  A discussion of assumptions and limitations for your models.

5.   Learning goal 6 should be on a separate page as everything else --- it is for you to use when applying for things.

Submission Details

Format: Submit a PDF report with Excel output included.

Grading Criteria:

o  Clarity and depth of analysis.

o  Justification and reasoning.

o  Presentation and accuracy of results.

o  Style. it should be formatted as a narrative piece, as if written for an academic journal.

o  Quality of the reflection piece.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图