代写Coursework for 661985 – Safety Critical Systems代写Python语言

Portfolio for Safety-Directed Design of a Brake-By-Wire System for Car

Coursework for 661985 - Safety Critical Systems

The Portfolio explores the iterative design of a Brake-By-Wire (BBW) system for cars.

There are two parts to this assignment. Part 1 is worth 40% of the assignment and Part 2 is worth 60% of the assignment.

You will analyse this architecture using Fault Tree Analysis and Markov Models and you will be asked to reflect on results. The tasks involve logical analysis and a small component of programming.

The proposed architecture for the system is given in Figure 1 below:

Figure 1. The proposed architecture of the BBW system

System Specification

•    The BBW features separate braking on each wheel.

•    All components of the system are powered by a common power supply (PS).

•    An electromechanical pedal (PL) receives the braking demand from the driver and sends this as message (PLm) to three pedal nodes PN1, PN2, and PN3.

•    From each pedal node PNX (where X:1…3) two replicas ofthe message PNXm are sent by the pedal node to busses B1 and B2.

•    Wheel nodes WN1 and WN3 each read the three messages PNXB1m from bus B1 and Wheel nodes WN2 and WN4 read the three messages PNXB2m from bus B2.

•    As long as one of the messages is received a wheel node can create the braking output applied to the corresponding wheel (WN1b ... WN4b).

Failures

Each component in this system has only one failure mode that shares the name of the component. For example:

•    The failure mode of component PS is PS

•    The failure mode of component B1 is B1

The failure mode of each component leads to omission of all outputs. For example:

•    If PS fails, you get O-p (Omission of p)

•    If PN1 fails, you get O-PN1m on both busses

In the absence of component failures, all four wheels apply the braking output and the car brakes correctly. When components fail, the system may fail to brake on one or more wheels. The effects vary depending on the number of wheel failures. For example:

•    If one wheel fails to brake, or three wheels fail to brake, the car is likely to  skid off its course. In this case, to correct the skidding failure, an electronic stability program could release the wheel that is diagonal to the wheel that fails to brake. The car then brakes slowly, and the stopping distance is increased.

•   If all wheels fail, then the car experiences catastrophic loss of braking.

The assignment tasks follow in two parts:

•    Part  1: Safety Analysis and Iteration of Design. This part assesses the material taught by Prof. Papadopoulos in the first part of the course

•    Part 2: Reliability Analysis and Iteration of Design. This part assesses the material taught by Dr Aslansefat in the second part of the course.

Part 1 - Safety Analysis and Iteration of Design

Part 1 is worth 40% of the Portfolio mark.

Based on the design given for the BBW in Figure 1 and its specification:

1.   Draw, or alternatively specify clearly using a set of logical expressions, a fault tree for the event “Omission of braking output by WN1”, i.e. for the event O-WN1b (10 marks).

2.   Calculate the minimal cut-sets of the fault tree (10 marks).

3.   Identify components that are single point of failure (5 marks).

4.   Based on the cut-sets, describe weaknesses and strengths ofthe system (5 marks).

5.   Draw, or alternatively specify clearly using a set of logical expressions, a fault tree for the “Loss of  braking in all three wheels W1, W2 and W3” that will cause skidding. Name the top event “OW123” (5 marks).

6.   Calculate the minimal cut-sets for this tree (5 marks).

Notes:

Explain your solutions in [1-6] above with a short paragraph of text to show your understanding. Avoid verbosity. Up to 30% of marks will be deducted for lack of explanation.

Fault trees should be constructed systematically by traversing the model of the system architecture and applying the algorithm taught in the course. Unsystematic, simplified, fault trees that somehow capture the failure logic correctly will be awarded less marks. If the calculation of cut-sets that follows from such simplified fault trees is trivial, it will be awarded less marks.

•    For clarity, in your fault trees, use the names of components, messages and component failure modes as displayed in Figure 1. Marks will be deducted if you use names that don’t correspond to the figure.

•   To avoid repetition of branches, expand the branch that is repeated only once and use references to the top event of this branch elsewhere. Marks will be deducted if you  unnecessarily expand repeated branches.

•    You may use HiP-HOPS or any other tool available free on the internet to construct the fault tree or calculate cutsets. However, make sure that you answer the questions. Fault trees must be drawn as graphs using the guidelines given above. Calculations of cutsets must be explicit, contain all logical steps, and explained. Tools will not necessarily do these things for you.

•    Graphs could be produced in a fault tree analysis or drawing tool. However, hand-drawn images photographed and carefully embedded in a report are acceptable as long as they are clear, and any symbols or text are clearly readable.

Part 2 -Dynamic Reliability Analysis of the BBW

Part 2 is worth 60% of the Portfolio mark.

Based on the design given for the BBW in Figure 1 and its specification, you will analyse the architecture using Markov Models. Calculation of reliability involves some coding. Note that the system description, failure modes, and behaviours in conditions of failure (e.g. Skidding) remain exactly as described earlier in the specification of the system.

Further assumptions that underpin reliability analysis are as follows:

•    It is assumed that all components have two states Operational and Failed.

•    It is assumed that the system is completely healthy at the starting point.

•   The failure distribution of all components is exponential with a constant failure rate.

Based on this design and the assumptions solve the following tasks:

7.   Only consider the independent failure modes ofthe 4 Wheels in the BBW, and assume that the rest of the system is perfect. Each single wheel failure leads the BBW to hazardous states of asymmetrical braking. In each of the 4 cases, skidding prevention is applied by locking the diagonal wheel leading the system to a corresponding recovery state with reduced braking capacity. We assume that the skidding prevention mechanism is perfect, i.e. the probability of its failure is zero. We also assume that any further wheel failure from asymmetrical braking or recovery states will lead the BBW to a single terminally failed state. Draw a Markov model and explain the model construction procedure (10 marks).

8.   Consider that in  [7], all wheels have the same failure rate of 0.0001 failures per hour. Provide a Python code to calculate and visualise the reliability curve for 2000 hours (10 marks).

9.   Only consider the failure modes of PL, PN1, PN2, PN3 and PS, assuming that the wheels are perfect. Draw a Markov model which shows how the system moves into a state of complete loss of braking and explain the model construction procedure (10 marks).

10. Consider that in [9], all failure modes have the same failure rate of 0.000623 failures per hour. Provide a Python code to calculate and visualise the reliability curve for 900 hours. (10 marks).

11. Consider only failure modes of B1 and B2, and assume that all other components are perfect. Also, assume that the busses are repairable with a failure rate of 0.0002 failures per hour, and a repair rate of 0.01 repairs per hour. Construct a Markov model to evaluate the Availability and MTBF of the bus subsystem of the two busses. Provide a Python code for steady-state availability and MTBF calculation (10 marks).

12. Consider only the failure modes of PN1, PN2 and PN3. Assume that all other components are perfect. Only focus on the reliability of pedal nodes, and explain how it can be improved using a reconfigurable Triple Modular Redundancy (TMR) architecture with one hot standby redundancy (see Figure 2). Apply the fixed  failure rate  of 0.000432  failures per  hour to  all components. Construct a Markov model to evaluate the reliability of the Pedal Node subsystem consisting of the three PN nodes with the new architecture. Provide a Python code for reliability calculation and visualise the reliability curve for 3850 hours (10 marks).

Figure 2, Reconfigurable TMR with Hot Standby Spares

Notes:

Explain your solutions in [7-12] above with a short paragraph of text to show your understanding. Avoid verbosity. Up to 30% of marks will be deducted for lack of explanation.

•   For computational problems [8, 10, 11 and 12], submit your Python code in separate files. These files should be named according to the question number (e.g., Question8.py, Question10.py, etc.). Please ZIP the files with the final report and submit it as a single-file submission.

Ensure your code is runnable. If your code cannot be executed due to errors, it will be examined manually, and marks will be awarded based on the effort and correctness of the approach.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图