代写Practical Data Science with Python Assignment 1: Data Cleaning and Summarising代写Python语言

Practical Data Science with Python

Assignment 1: Data Cleaning and Summarising

Due: 23:59 on the 13th  of April 2025

This assignment is worth 25% of your overall mark.

Introduction

In this assignment, you will examine a (set of) data file(s) and carry out the first steps of the data science process, including the cleaning and exploring of data. You will need to develop and implement appropriate steps, in Jupyter notebook (in the Anaconda version specified in the canvas announcement), to load a data file into memory, clean, process, and analyse it. This assignment is intended to give you practical experience with the typical first steps of the data science process.

The “Practical Data Science” Canvas contains further announcements and a discussion board for this assignment. Please be sure to check these on a regular basis  – it is your responsibility to  stay  informed  with  regards  to  any  announcements  or  changes.  Login through https://rmit.instructure.com/.

Where to Develop Your Code

You are encouraged to develop and test your code in the following environments: Jupyter Notebook on Lab PCs.  (Or please use the Anaconda version as specified in the course announcement)

Jupyter Notebook on Lab PCs

On Lab Computer, you can find Jupyter Notebook via:

Start → All Programs → Jupyter Notebook - Anaconda

Then,

•  Select New → Python 3

•  The new created ‘*.ipynd’ is created at the following location:

C:\Users\sXXXXXXX

where sXXXXXXX should be replaced with a string consisting of the letter “s” followed by your student number.

Plagiarism

RMIT University takes  plagiarism very  seriously. All  assignments will be  checked with plagiarism-detection software; any student found to have plagiarised will be subject to disciplinary action as described in the course guide. Plagiarism includes submitting code that is not your own or submitting text that is not your own. Allowing others to copy your work is also plagiarism. All plagiarism will be penalised; there are no exceptions and no excuses.  For  further  information,  please  see  the Academic Integrity information  at http://www1.rmit.edu.au/academicintegrity.

Turnitin will be used for Plagiarism Review for this assignment in Canvas.

General Requirements

This section contains information about the general requirements that your assignment must meet. Please read all requirements carefully before you start.

•  You must do the assignment in Jupiter Notebook that are available in Anaconda.

•  Parts of this assignment will include a written report; this must be in PDF format.

•  Please ensure that your submission follows the file naming rules specified in the tasks below. File names are case sensitive, i.e. if it is specified that the file name is gryphon, then that is exactly the file name you should submit; Gryphon, GRYPHON, griffin, and anything else but gryphon will be rejected.

Task 1: Data Preparation (8 marks)

Have  a  look  at  the  file  hotel_bookings_data.zip,  which  is  available  in  Canvas  under  the Assignments/Assignment  1  section  of  the  course  Canvas.  This  dataset  contains  booking information for a city hotel and a resort hotel, including details such as booking dates, length of stay, number of guests, and more.

Being a careful data scientist, you know that it is vital to carefully check any available data before starting to analyse it. Your task is to prepare the provided data for analysis. You will start  by  loading  the  CSV  data  from  the  file  (using  appropriate  pandas  functions)  and checking whether the loaded data is equivalent tothe data inthe source CSV file. Next, apply the data cleaning techniques covered in the lectures to resolve issues/errors, including handling  missing  data,   eliminating  duplicates,  standardizing   formats,  and   addressing outliers.

Hint: it is a good practice to check every column in the dataset for any potential data issues; however, it should be fine that you have identified and corrected data issues in 5 columns in the dataset.

Once the data is cleaned, store the refined version as a CSV file, e.g. (file can be named as ‘cleaned version.csv’).

Task 2: Data Exploration (10 marks)

Q1: What insights can be gained from exploring booking trends over time, such as monthly trend of booking statistics (e.g., total bookings, cancellations, average lead time) in the year of 2016?

Q2:  How do we describe and visualize the complex relationships between  bookings, seasons and years for data between 2015 and 2017? What can be learned from this analysis?

Q3: What stories emerge when we analyze the distribution of bookings by geographic region (like top 5 countries), and how do these insights inform. our understanding of their customer behavior. and preferences (e.g., average length of stay and cancellation rates)?

Note, each visualization (graph) should be complete and informative in itself and should be clear for readers to read and obtain information.

Task 3: Report (7 marks)

Write your report and save it in a file called report.pdf, and it must be in PDF format, and must be at most 6 (in single column format) pages (including figures and references) with a font size between 10 and 12 points. Penalties will apply if the report does not satisfy the requirement. Moreover, the quality of the report will be considered, e.g. clarity, grammar mistakes, the flow of the presentation.

Remember to clearly cite any sources (including books, research papers, course notes, etc.) that you referred to while designing aspects of your programs.

•  Create a heading called “Data Preparation” in your report.

Provide a brief explanation  of how you  addressed  the task.  For the  steps  of dealing with the potential issues/errors, please create a sub-section for each type of errors you dealt with (e.g. typos, extra whitespaces, sanity checks for impossible values, and missing values etc), and also explain and justify how you dealt with each kind of errors.

•  Create a heading called “Data Exploration” in your report.

For   each    numbered   step    in    Task   2    above,   create    a    sub-section   with corresponding numbering. Please explain and justify how you explore the data as required properly.

What to Submit, When, and How

The assignment is due at

23:59 on the 13th of April 2025.

Assignments submitted after this time will be subject to standard late submission penalties.

You need to submit the following files:

Notebook   file   containing   your   python   commands   for   Task    1   and   Task, ‘assignment1.ipynb’. Please use the provided solution template to organise your solutions: assignment1 TEMPLATE.ipynb

#  For  the  notebook  files,  please  make  sure  to  clean  them  and  remove  any unnecessary lines of code (cells). Follow these steps before submission:

1.  Main menu → Kernel → Restart & Run All

2.  Wait  till  you  see  the  output  displayed  properly.  You  should  see  all  the dataprinted and graphs displayed.

Your  report.pdf file: at most 6 (in single column format) pages  (including figures and references) with a font size between 10 and 12 points. Penalties will apply if the report does not satisfy the requirement.

They must be submitted as ONE single zip file, named as your student number (for example, 1234567.zip if your student ID is s1234567). The zip file must be submitted in Canvas:

Assignments/Assignment 1.

Please do NOT submit other unnecessary files.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图