代做ECON4043 The 1st Assignment of Public Finance 2024-25代写Java程序

The 1st Assignment of Public Finance (ECON4043)

Question 1 [34 marks total]

Suppose that Mark is a single father who spends all of his income and TANF benefits on education for his children (denoted by E). Let H denote the hours worked per year for Mark and F represent the free hours he spends for himself. Mark can work a maximum of 2500 hours per year and assume that he spends all of his remaining time for leisure (H + F = 2500). Assume further that Mark can initially make $25/hour and education costs $1/unit. (Round the answer to 2 decimals ifit’s necessary)

a.    [4 marks] Write down the initial budget constraint for Mark in terms of F and E. What is the price of an hour of leisure for Mark? Draw the budget constraint indicating the x- intercept (F), y-intercept (E) and the slope.

b.    [6 marks] Now suppose that the government is planning to introduce an TANF policy with a grantee benefit of $12,000 and a benefit reduction rate of 60% for all the single parents, what is the price of leisure for Mark under this policy? Draw the budget constraints for this policy as well as for the initial case on the same graph. What do you predict the impact of this TANF policy will be on Mark’s education expenditure (E) and his leisure time spent for himself (F)? Identify the income and substitution effects separately.

c.    [6 marks]  Based  on the above b, now the government decides to decrease the grantee benefit from $12,000 to $6,000 and using the same deduction rate, what is the price of leisure for Mark under this new policy? Draw the budget constraints for this new policy as well as for above two cases on the same graph. What do you predict the impact of TANF policy changes will be on Mark’s education expenditure (E) and his leisure time spent for himself (F)? Identify the income and substitution effects separately.

d.    [5 marks] Assume that Mark’s utility function takes the following form.

U(E,F) = 150ln(F) + 75ln(E)

Set up the utility maximization problem and solve for Mark’s optimum expenditure on education (E), leisure (F) and utility (U) under two TANF policies in above b and c. How large will the labor supply response be to the policy changes?

e.    [4 marks] Assume the labor market  of this economy is an competitive market, and the

supply curves and the demand curve of the labor market in this economy are as followed:

Original Supply Curve: Qs=150,000+8w

New Supply Curve with TANF $12,000: Qs=100,000+8w

New Supply Curve with TANF $6,000: Qs=120,000+8w

Demand Curve: Qd =200,000-10w

Using the tools of welfare analysis to measure the welfare implications of the introduction TANF and cutting TANF benefits (Calculate the deadweight loss and show it in a diagram).

f.     [4 marks] Calculate the price elasticity of supply when wage changes from $25 to $30, hours worked per year increased from 2500 hours to 2800 hours. And it is elastic or inelastic or unit elastic? If the government permanently uses the TANF, will the policy have a larger effect one year from now or five years from now?

g.    [5 marks] Suppose you are hired by the government to evaluate the impact of the above TANF policy change, for example, from a large TANF to a lower TANF. What type of sample data would you use? What type of estimation method would you use? Explain.

Question 2 [23 marks total]

Suppose that a local government starts with a balanced budget, and plans to implement a new law to increase transfer payments of medical care to local citizens, because the government believes that this change might improve the health situation of the citizens, and hence promote their productivity and production efficiency in the long run.

a.    [3 marks] If the new law is passed and put into force, is the increased transfer payment an entitlement spending or a discretionary spending? Why?

b.    [6 marks] If the government uses the dynamic  scoring rather than the  static scoring to evaluate the effects of this new law on the budgetary position, what are possible positive and negative effects? For the negative effects, give an example on the expenditure side and an example on the revenue side (try your best to use what you learned in class).

c.    [6  marks]  Suppose  that the  current year is year 0, and the new law will increase the government medical care expenditure for $105 million in EACH of the next  10 years (from year 1 to year 10). Suppose the annual interest rate is 5% and is stable. Calculate the present discounted value   (PDV, denoted in $ in period 0) of  these  increased expenditure in the next 10 years. Show the equation for calculation and the simplified, compact expression of the PDV formula.

d.    [6 marks] Continue with part c. Suppose that the government plans to increase the local citizens’ payroll tax on medical care to sponsor the increased expenditure caused by the new law. Suppose the plan for the tax is as follows:  In year 1, the government  can increase the tax revenue by $100 million, and this tax revenue will increase at an annual rate of 3% from year 2 to year  10. Suppose the annual interest rate is still 5% and it is stable. Calculate the present discounted value (PDV, denoted in $ in period 0) of the increased revenue in the next 10 years. Show the equation for calculation and  the simplified, compact expression of the PDV formula.

e.    [2 marks] Continue with parts c and d. If the government uses an intertemporal budget constraint in year 0, does the government have an intertemporal budget surplus or deficit? Why?

Question 3 [43 marks total]

Part A: Market failures are often caused by the problem of externalities. About the problem of externalities, we have the following questions:

a.     [6 marks]  The production of paper is likely to involve the pollution of water sources. Assuming that there is a competitive market for paper production, use a typical demand- supply diagram to illustrate the effect of the production externality on total social surplus.

b.    [10 marks] If a corrective (Pigouvian) tax per unit of pollution is imposed on the producer of paper in Part a), use typical demand-supply diagram to show and explain changes in consumer surplus, producer surplus and total social surplus before and after the tax is imposed.

Part B:

c.    [10 marks] Assume that in a hypothetical country there is only one paper mill A, and according to the requirement of its  government, this paper mill needs to reduce the emission of pollutants during the production process. Suppose that the overall cost of pollution reduction for this mill is described by C(Q) = 4Q2 , where denotes  the quantity of pollution reduction, while the  social benefit of pollution reduction for this country can be expressed as B(Q) = 320Q2  . Calculate the socially optimal level of this mill’s pollution reduction, show and explain the calculation process. If a tax per unit of pollution is imposed on this paper mill, can the socially optimal level be achieved? Explain why.

d.    [8 marks]  In Part c), if there  also exists another paper mill B in this country, and the overall cost of its pollution reduction is described by C(Q) = 60Q + 2Q2  . Calculate the socially optimal levels of pollution reduction for these two mills. If a tax per unit of pollution is levied on these two mills, calculate the tax that would make these two mills generate the optimal amounts of pollution reduction.

e.    [9 marks] In Part d), If these two mills each produce 70 units of pollution, calculate the total pollution amount in the social optimum. If these two mills are required to reduce their pollution by the same amount, can the socially optimal level of pollution reduction be achieved? Explain why. If these two mills are given the same numbers of pollution permits and if they are allowed to trade them, how can the socially optimal level of pollution reduction be achieved?


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图