代写CHEM0019 Physical Chemistry代写数据结构语言程序

MODULE CODE          : CHEM0019

ASSESSMENT PATTERN: CHEM0019A5UD     001

                                      CHEM0019A5UE     001

MODULE NAME          : Physical Chemistry

Candidates should attempt ALL questions. Each question is marked out of 20 and the numbers in square brackets in the right-hand margin indicate the provisional allocation of marks to the subsections ofa question. To obtain full marks you must show all steps of your working. You must write down all equations and all the numerical values that you use in your calculations.

1.       Answer ALL parts.

(a)      Consider the following elementary reactions, with rate coefficients indicated:

A2 + M          →         2A + M k1

A + B            →          C + D k2

C                   →          A k3

(v)       Explain BRIEFLY what is meant by the steady state approximation and use it to obtain an expression for the concentration of species A in terms of rate coefficients and other species concentrations in the reactions above.                     [2]

(b)               (i)   Write down the mechanism proposed by Lindemann to account for the kinetics of the unimolecular decomposition reaction

E = products (P).                              [3]

(ii) Using your mechanism, derive an expression for the rate of product (P) formation in terms of rate coefficients and stable molecule concentrations only.   [2]

(b)               (iii) The experimentally observed rate coefficient kobs for the decomposition of species E, defined by

was found to be k bs = 57.1 s–1 when the total concentration of all species present [M] = 5 × 10–3 mol dm–3 , and k bs = 64.0 s–1 when [M] = 8 × 10–3 mol dm–3 . Use these data to determine a rate coefficient and a ratio of rate coefficients from elementary reactions in your mechanism.

(iv)      Explain BRIEFLY and QUALITATIVELY the principal deficiency of the Lindemann mechanism and how the mechanism could be improved.  Kinetic derivations are not required here.                           [2]

2.       Answer ALL parts.

(a)      2 H127 I has a rotational constant B0  = 3.223 cm-1  and harmonic wavenumber we = 1639.65 cm-1.

(i) Calculate the reduced mass of 2H127I in kg.            [3]

(ii) Calculate the equilibrium bond length r0 of 2H127I in pm. [3]

(iii) Calculate the force constant k of 2H127I in N m–1 . [3]

(iv) Explain how the rotational constant would vary with increasing vibrational quantum number.   [1]

(b) In the vibrational absorption spectrum of 1H81Br, the fundamental and first overtone lie at 2558.54 cm-1 and 5026.645 cm-1  respectively.

(i)        Label these transitions on an energy level diagram and determine we and wexe.      [5]

(ii)       Calculate the well depth De  and dissociation energy D0  of 1 H81Br in cm-1.    [3]

(iii)      Explain how D0  and De would differ for 2 H81Br compared to 1 H81Br.      [3]

USEFUL INFORMATION

Relative isotopic masses: 2 H 2.014; 127 I 126.904

3.       Answer ALL parts.

The π molecular orbitals (MOs) of 1,3-butadiene may be expressed using a linear  combination of atomic orbitals, , where is the carbon 2p orbital perpendicular to the molecular plane at atom k with the atomic labelling

H2C1=C2H-C3H=C4H2. A Hückel calculation gives normalised π MOs (Ψiπ with i = 1, 2, 3, 4) with the following coefficients:

(a)      Using circles of different size and shading to represent the magnitude and

phase of the atomic orbital coefficients, sketch the π MOs, indicating any nodal planes.                     [4]

(b)      Write down the Hückel secular equations in matrix form in terms of

(f)       A Hückel calculation on C2 H4  (ethene) yields a total π electron energy of

2α + 2β and a π bond order of 1. Compare these values to those

calculated in parts (c) and (e), and hence describe the π bonding in 1,3-

butadiene. How realistic are the assumptions in the Hückel calculations for 1,3-butadiene?                                              [6]

4.       Answer ALL parts.

(a)      14N16O has a doubly degenerate ground electronic state and a low-lying  doubly degenerate first excited state of the same multiplicity at a relative energy corresponding to a wavenumber of 121 cm-1.

(i)       Assuming that no other electronic states contribute, write the

expression for the electronic partition function qE  and calculate its value at 298 K.                               [4]

(ii)       State how you would expect the expression for qE to change if both

the ground and the first excited electronic states were non-

degenerate and separated by a much larger energy.                            [1]

(iii)      Explain why a maximum is observed at approximately 75 K in the

calculated excess heat capacity CV for 14N16O.                                      [4]

(b)     The rotational temperature of a molecule is given by , where B is the rotational constant. This expression is used to justify the validity of the  continuum approximation. For 14N16O:

(i)       calculate the rotational temperature given that its moment of inertia

5.       Answer ALL parts.

(a)      Define the term azeotrope. Sketch and label the temperature-composition

phase diagram for a positive azeotrope. Indicate the azeotropic  composition on the diagram.          [3]

(b)      2.5 kg of benzene (molar mass Mb  = 78.11 g mol-1) is mixed with 1.5 kg of

toluene (molar mass Mt  = 92.14 g mol-1) at 303.15 K. Assuming ideal

behaviour, calculate the Gibbs energy of mixing, the entropy of mixing and  the enthalpy of mixing.       [8]

(c)      Two components, A (vapour pressure of pure A, pA(*)   = 26.3 kPa) and

B ( pB(*)   = 23.4 kPa) are mixed at 298.15 K. At equilibrium after mixing, the mole fractions of A in the liquid phase and in the vapour phase are

xA = 0.7 and yA = 0.81 respectively. The total vapour pressure of the

mixture is p = 20.3 kPa. Calculate the excess molar Gibbs free energy of

the mixture. Is mixing of A and B more or less favourable than that in an   ideal mixture?                      [5]

(d)      Molecules composed of a hydrophilic head and a hydrophobic chain can

form. structures in water, where the solvated heads are on the surface protecting the chains at the centre from the solvent. These structures form. in response to a chemical potential μ = Ya + Ka , where a is a variable describing the solvated surface of each molecule exposed to water, γ is a constant describing the attraction between the chains, and K is a constant describing the repulsion between the heads. Draw and label a plot of μ as a function of a. Comment on the nature of this equilibrium in terms of the  dynamics described above.           [4]




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图