代做SEMTM0016 Artificial Intelligence for Robotics代做Python语言

SEMTM0016 Artificial Intelligence for Robotics

SEMTM0016 Coursework - Part A

The questions below form. one part of the assessment for the unit SEMTM0016.

This part of the coursework is worth 30% of the overall unit assessment and is to assess your learning on the materials covering Supervised and Unsupervised Learning.

You must submit two items (on Blackboard) for this part:

1. a single PDF .pdf file (named ‘SEMTM0016 PartA.pdf’) that reports your answers to the questions below, and

2. a single .zip file (named ‘SEMTM0016 PartA.zip’) containing all Python .py files.

Your report PDF (1) for this part of the assessment must containing everything you wish to be marked for this part of the assessment (including, but not limited to, numerical and textual answers and figures). Material not contained in either (1) or (2) will receive no credit for this part of the assessment.

This is an individual coursework and so your submission must be your own individual effort; submis-sions will be checked for possible plagiarism. Collaboration is not permitted. You are not permitted to use AI tools (e.g., ChatGPT) to generate your answers to any question. The University of Bris-tol considers unauthorized use of AI to complete assessments as contract cheating. If cheating or collaboration are detected, as with any assessment, then this will be subject to the University’s rules on academic integrity, please refer to the link below for details:

https://www.bristol.ac.uk/students/support/academic-advice/academic-integrity/

Task Overview

You are the mighty HeroBot traversing the MazeDungeon where you will encounter many different entitities.

The following files will help you in your quest and can be downloaded from Blackboard:

•  sprites greyscale10 . npz : This dataset is comprised of 13771 10x10 pixel greyscale images of entities within the dungeon.  Each entity is labelled with a particular ‘race’ and there are four races in total.

• dungeon sensorstats . csv :  This  dataset gives sensor and stats information about 10,000 example entities within the dungeon.

You have three tasks to complete:

Q1: Predict the race of the entity given a 10x10 pixel greyscale image.

Q2: Predict the bribe amount that a human guard will accept to let you pass using only the four features ‘stench’, ‘sound’, ‘heat’ and ‘intelligence’ in the second dataset.

Q3: Group the entities based on physical threat level using their ‘height’, ‘weight’ and ‘strength’.

Question 1 - Supervised Classification (15 marks)

(1.1) Preparation of the data: Save the file sprites greyscale10. npz locally and use the following commands to import the data within this file:

import numpy as np

data = np . load (" sprites_greyscale10 .npz ")

train_X = data [" train_X "]

train_Y = data [" train_Y "]

test_X = data [" test_X "]

test_Y = data [" test_Y "]

(1.2) Extract a subset of (training and test) data that corresponds to only two classes.  Make sure that you extract features and labels for the same datapoints.

(1.3) (6 marks) Use Decision Trees, KNN and Logistic Regression classifiers from the worksheets to separate the two classes in the image dataset. For each classifier, train (fit) your model on the training set then evaluate its performance on the test set.

(1.4) (9 marks) Justify your choice of model hyperparameters (those covered in the worksheets).

Note: you are not allowed to use Python’s built-in options for Hyperparameter optimisation, if needed, you should implement it (see worksheets for related examples).

Question 2 - Supervised Regression (4 marks)

(2.1) Preparation of the data: Save the files dungeon sensorstats train . csv and

dungeon sensorstats test . csv locally and use the following commands to import the data within this file:

import pandas as pd

train_data = pd . read_csv (’ dungeon_sensorstats_train .csv ’)

test_data = pd . read_csv (’ dungeon_sensorstats_test .csv ’)

(2.2) Extract the subset of the training and test data that (i) corresponds to only the ‘human’ class and (ii) with only four sensor features (intelligence, stench, sound, heat) and the target (bribe).

(2.3) (1 mark) Use the features (intelligence, stench, sound and heat) in this extracted subset to

build a Linear Regression model for predicting the bribe (target) and outputting the MSE.

(2.4) (3 marks) Now choose a single feature among the four features to build a Linear Regression model for predicting the bribe  (target)  and outputing the MSE. Visualise the data in 2- dimensions and plot your model on this 2D display. Compare the MSE with your findings in (2.3).

Question 3 - Unsupervised Clustering (8 marks)

(3.1) Preparation of the data: Save the file dungeon sensorstats. csv locally and use the following commands to import the data within this file:

import pandas as pd

train_data = pd . read_csv (’ dungeon_sensorstats .csv ’)

(3.2) Choose two features from height, weight and strength and extract the data corresponding to your chosen features.

(3.3) (4 marks) Use KMeans and Gaussian Clustering to separate the entities into k groups in- dicating their physical threat level.  Visualise the data in 2-dimensions for each method and show the clusters for optimal k.

(3.4) (4 marks) Justify your choice of optimal k for each of the methods and your final optimal k.

Report

There are 3 marks for overall presentation of the report.

Your report should be no longer than six pages, shorter is fine.  Use an 11 or 12pt font and do not try tricks like expanding the margin to fit in more text, shorter is better than longer.

Your report must be submitted as a pdf and should be prepared either in LaTeX (overleaf is a good approach), MS Word, or a similar text editor to prepare the report and submit it as a pdf document.

Your code will not be marked for elegance, but it should run correctly; it is expected you will use Python. Do not include screenshots of graphs, they should be imported directly; resize them to the correct size before importing them, if the labels are tiny the graphs will not be marked.  Make sure figure captions are descriptive, it is better to have some overlap between figure captions and the main text than to have figure captions that are not reasonably self-contained.

Avoid code snippets in the report unless that feels like the best way to illustrate some subtle aspect of an algorithm; do always though consider a mathematical description if possible.  You will be asked to submit your code and it may be tested to make sure it works and matches your report. It will not, however, be marked itself for quality.

The teaching assistants (TAs) are unable to answer questions about how to solve an exercise or what methods to use beyond what has been specified in the coursework document.  However, if you need help to know more about a method in a certain lab/worksheet in order to solve an exercise, do ask TAs for help about that method.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图