代做ECM1414 Data Structures and Algorithms帮做R语言

ECM1414 Data Structures and Algorithms

Requirement

In this exercise you will implement two sorting algorithms and compare their computational complexities, as measured by the number of comparisons, expressed as a function of the length of the list being sorted.

1. Implement the following (see lecture notes for guidance):

lessThan(x, y), which performs a standard comparison operation (using “x < y”) and increases the global number of comparisons by 1. You should use this function instead of x < y in the following functions so that you have an easy way of counting comparison operations for the complexity analyses. insert(item, list), which uses the straight (linear) insertion method to insert an element item into a sorted list list.

insertSort(list), which sorts a list list by insertion, using the insert function. split(list, list, list), which splits a list in the middle into two (see lecture notes for the detailed description).

merge(list, list), which merges two sorted lists, and return the merged list.

mergeSort(list), which sorts a list by recursive merging.

randomList(n), which generates a list of random integers, of length n specified by the user (the integers should be in the range [-10n, +10n]).

2. Use these procedures to write a function listdemo(n), which demonstrates the above functions by generating a random list of length n, sorting it by both insertSort and mergeSort, and printing the original unsorted list and the number of comparisons made in each case.

In your hard-copy submission you should include print-outs of four runs of listdemo(n), with n = 25, 50, 75, 100.

3. Now for n = 200, 400, 600, 800, 1000 generate 5 random lists of length n and tabulate the number of comparisons made in sorting each list both by insertSort and by mergeSort. Plot these results in a graph, clearly distinguishing between data for insertSort and data for mergeSort (e.g., using different symbols or colours). Your graph should have n, the length of the list, plotted along the horizontal axis, and the number of comparisons plotted along the vertical axis.

In the same graph, for each n, plot the number of comparisons for sorting (a) the already sorted list

[1, 2, 3, … , n], and (b) the reverse-sorted list [n, n - 1, … , 2, 1], using both sorting methods.

4. Assuming that the average-case and worst-case complexity functions of the two sorting algorithms are of the form. an2 (linear insert sort) and bn log2 n (merge sort) respectively, use your data to form. empirical estimates of the coefficients a and b. To this end, you may and it helpful to tabulate the values of cn=n2 and cn=(n log2 n), where cn is the number of comparisons.

Also use your data to form. a hypothesis about the best-case complexities for the two algorithms.

5. Comment on your results, with reference to the theoretical complexity analyses of the algorithms used, best and worst cases, and the choice of complexity measure. To what extent is the theory borne out in practice? What have you learnt from this exercise that will be useful in future?




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图