代写Assignment 2 - Video Presentation帮做R编程

Assignment 2 - Video Presentation (35%)

Principal Component Analysis

TASK

For your video presentation, you must demonstrate your PCA analysis on the continuous features of the WACY-COM dataset and interpret the results. Submit the recording via the Panopto link on Canvas. Please ensure you follow the instructions  carefully.

The due date for this assessment is Friday of Week 6 on 4 April 2025 before midnight.

Perform PCA and Visualise Data

(i) First, copy the code below to a R script. Enter your student ID into the command set.seed(.) and run the whole code. The code will create a sub-sample of 400 that is unique to you.

#You may need to change/include the path of your working directory

#Import the dataset into R Studio.

dat <- read.csv("WACY-COM.csv", na.strings=NA, stringsAsFactors=TRUE) set.seed(Enter your student ID here)

#Randomly select 400 rows

selected.rows <- sample(1:nrow(dat),size=400,replace=FALSE)

#Your sub-sample of 400 observations

mydata <- dat[selected.rows,]

dim(mydata) #check the dimension of your sub-sample

(ii)  Extract  only  the continuous features and  the APT feature from  the  WACY-COM  dataset and store them as a data frame/tibble. Refer to Assignment 1 for the feature description if needed.

(iii) Clean the extracted data based on the feedback received from Assignment 1.

(iv) Remove the incomplete cases to make it usable in “R” for PCA.

(v)  Perform PCA using prcomp(.) in R, but only on the numeric features (i.e. ignore APT  in this step).

-     Explain   why   you   believe   the   data   should   or   should   not   be   scaled,   i.e. standardised, when performing PCA.

-     Display and describe the individual and cumulative proportions of variance (3 decimal places) explained by each of the principal components.

-     Outline how many principal components are adequate to explain at least 50% of the variability in your data.

-     Display and interpret the coefficients (or loadings) to 3 decimal places for PC1, PC2 and  PC3.  Describe  which  features  (based  on  the  loadings)  are  the key drivers for each of these three principal components.

(vi) Create and display the biplot for PC1 vs. PC2 to visualise the PCA results in the first two dimensions. Colour-code the points based on the APT feature. Explain the biplot by commenting on the PCA plot and the loadings plot individually, and then both plots combined (see Slides 28-29 of Module 3 notes). Finally, comment on and justify which (if any) features can help distinguish APT activity.

(vii)     Based on the results from parts (v) and (vi), describe

- whether PC1 or PC2 (choose one) best assists in classifying APT. Hint: Project   all points in the PCA plot onto the PC1 axis (i.e. consider the PC1 scores only) and assess whether there is a clear separation between known and unknown APT actors. Then, project onto the PC2 axis (i.e. consider the PC2 scores only) and evaluate whether the separation is better than in PC1. You can access the PCA scores for PC1 and PC2 via mypca$x, assuming mypca contains your PCA results from prcomp(.).

-     the key features in this dimension that can drive this process  (Hint: based on your decision above, examine the loadings from part (v) of your chosen PC and choose those whose absolute loading (i.e. disregard the sign) is greater than 0.3).

Video Presentation Checklist

1. In your video presentation, you must

a. Run your code corresponding to parts (i) to (vii) above

b. Display the relevant output

c. Interpret the output

2. Your video presentation must include a camera shot of yourself in the video

capture, unless there is an exceptional reason and is supported by a Learning  Assessment Plan (LAP). 20% is automatically deducted from your final mark if this is not included in your video presentation. If you choose to record with another application, you must make sure that this feature is included.

3.   Your video presentation must be between 4-5 minutes long.

Marking Rubrics

Criteria

Fail

<0-49%

Pass

50-59%

Credit

60-69%

Distinction

70-79%

High Distinction 80-100%

Working Code (7%)

Code does not run or contains major flaws, preventing meaningful PCA analysis. Little to no documentation.

Code has significant

errors or omissions that affect PCA output. Poor documentation and

some redundancy.

Code has a few errors and/or does not fully

achieve intended PCA and relevant analyses. Documentation is

present but could be improved.

Code runs with minor

issues but still performs PCA and relevant tasks correctly. Minimal

redundancy and good documentation.

Code runs flawlessly,

correctly performs PCA and relevant tasks, and produces meaningful

outputs. No errors, redundant code, or inefficiencies.

Interpretation of results (18%)

Fails to interpret the PCA results

meaningfully or

provides incorrect conclusions.

Interpretation is vague, lacks depth, and/or has major inaccuracies or errors.

Provides a basic

interpretation with

some inaccuracies or missing key insights.

Provides a strong and mostly accurate

interpretation of PCA results with minor

omissions or inaccuracies.

Provides an in-depth,

clear, and accurate

interpretation of PCA

results, including the

significance of principal components and key

loadings. Justifies conclusions with evidence.

Presentation skills (7%)

The presentation is

unclear. The presenter made an attempt at

expression, but the

pace and tone need

improvement to better engage the audience.

The presentation lacks structure. Presenter

made a good attempt, but the expression,

pace, and tone could be improved.

The presentation is

understandable and

delivered at a good

pace. However, there is minimal confidence in

the presentation style.

Clear and structured

presentation with minor pacing or engagement issues. Presenter was fluent and displayed

good confidence.

The presenter was

dynamic, natural, and persuasive, with an

appropriate tone.

Delivery was clear,

confident, and well-

structured, with

effective pacing and

engagement that

maintained a high level of confidence

throughout.

Timing (3%)

Presentation is less

than 2 minutes or more

than 9 minutes.

Presentation is

between 2 and 3

minutes, or between 8 and 9 minutes

Presentation is

between 3 and 4

minutes, or between 7 and 8 minutes

Presentation is between 6 and 7 minutes

Presentation is between 4 and 5 minutes





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图