代做CMT224 Social Computing 2024-25代写Python编程

Assessment Proforma 2024-25

Key Information

Module Code

CMT224

Module Title

Social Computing

Assessment Title

Social Computing Problem Sheet

Assessment Number

1

Assessment Weighting

100%

Assessment Limits

Submissions must be made using the notebook templates provided. Follow  the instructions under “Assessment

Description” below.

The Assessment Calendar can be found under ‘Assessment & Feedback’ in the COMSC-   ORG-SCHOOL organisation on Learning Central. This is the single point of truth for (a) the hand out date and time, (b) the hand in date and time, and (c) the feedback return date for all assessments.

Learning Outcomes

The learning outcomes for this assessment are as follows:

1.   Analyse fundamental traits of complex networks by synthesising theoretical concepts and methodologies from graph theory.

2.   Evaluate and implement computational approaches to model and visualise complex social phenomena.

3.   Design and create software to investigate or support human interaction behaviour.

Submission Instructions

The coversheet can be found under ‘Assessment & Feedback’ in the COMSC-ORG- SCHOOL organisation on Learning Central.

All files should be submitted via Learning Central.  The submission page can be found under ‘Assessment & Feedback’ in the CMT224 module on Learning Central.  Your submission should consist of multiple files:

Description

Type

Name

Coversheet

Compulsory

One PDF (.pdf) file

[student_number]- coversheet.pdf

Part 1 Notebook

(Using the template provided on

Learning Central)

Compulsory

One IPython

Notebook file (.ipynb)

[student_number]-part-1.ipynb

Part 2 Notebook

(Using the template provided on

Learning Central)

Compulsory

One IPython

Notebook file (.ipynb)

[student_number]-part-2.ipynb

Part 3 Notebook

(Using the template provided on

Learning Central)

Compulsory

One IPython

Notebook file (.ipynb)

[student_number]-part-3.ipynb

If you are unable to submit your work due to technical difficulties, please submit your work via e-mail to comsc-submissions@cardiff.ac.ukand notify the module leader.


Assessment Description

You are tasked with analysing datasets representing different types of social and communication behaviour. These datasets are provided as files and can be found alongside this coursework pro-forma on Learning Central. Alongside the dataset files, there are 3 (THREE) IPython notebooks, named part-1.ipynb, part-2.ipynb, and part-3.ipynb, which you should solely use to complete the assignment and submit these in line with the Submission Instructions section above. The cells in each completed notebook will be ran in the order that they appear. You do not need to resubmit the dataset files.

You are required to address 16 total questions across the 3 parts. These questions are also listed below for convenience. For EACH question in EACH notebook:

1.   Complete the cell below each question marked with “#CODE:” with the Python code needed to generate any new information you need for your answer. This information should be outputted when the cell is run, and any floating-point values should be presented to 2 decimal places unless they are less than 0.01.

2.   Complete the cell below this marked with “ANSWER:” with your answer to the question, referring to the information outputted above (as well as any previous cell if needed). In doing so, briefly explain your approach and methods/measures used to  answer the question and justify any choices made. Each answer cell should (ideally) be no more than 125 words.

You may use any Python packages installable via pip. “%pip install <some_package>” commands should be placed in the cell below “Install Python packages (pip only)” provided at the top of each notebook.

“import <some_package>” lines for all packages required for the notebook to be ran successfully should be placed in the cell under “Import Python packages” provided at the top of each notebook.

You may add additional cells throughout the notebooks, but this should be minimised.

Any code submitted will be run on a system equivalent to a Cardiff University imaged lab machine and must be submitted as stipulated in the instructions above. Any deviation from the submission instructions above (including the number and types of files submitted) may result in a mark of zero for the assessment or question part.

Staff reserve the right to invite students to a meeting to discuss coursework submissions.



Questions (duplicated from the three notebook files)

Part 1:

Examine the file "emails_cmt224.edgelist" which represents email behaviour at an organisation. Each line contains two numbers, u and v, separated by a blank space.

Consider each number as an identifier for an individual in an organisation, with the space on each line representing that the individual, u , sent at least one email to another individual, v, at some point.

Additionally, examine the JSON file "emails_cmt224_departments.json" (departments file). Keys in the departments file represent individuals using the same ids as in the "emails_cmt224.edgelist" file and the values represent a department id that the individual can be attributed to.

Model the data using an appropriate, directed network representation and answer the following questions:

Q1. How many individuals only send emails, only receive emails, or both send and receive emails?

Q2. For individuals that both receive and send emails, what proportion only do so with the same people?

Q3. How many individuals only send emails within their department?

Q4. Could the connectivity within the largest department be suggested to be reflective of a small world phenomenon in comparison to the typical connectivity of 10 comparative random networks?

Q5. Using the connections that individuals have in the network, are they more likely to mix with others in their department or those with a similar number of inward connections?  You may define an appropriate assumption for similarity in your answer.

Q6. Assume the role of an outsider with complete visibility of the network that wishes to spread a hypothetical email such that everyone in the organisation would know the information it contained as quickly as possible. Also assume that the email will be forwarded in sequential timesteps using the following mechanism: if an individual is told the information in an email at timestep t, the individual will forward the email to all others that they have previously emailed before this forwarding process began at timestep t+1. Therefore, individuals should not forward the information to those that have previously emailed them that they have not sent an email to. Individuals can be told the information more than once.


If you had to select any 5 individuals to email at timestep 0, what is the fewest timesteps needed for the email to be received by everyone in the network? In determining your answer, use one or more appropriate network connectivity measures, rather than an exhaustive search through every combination of nodes in the network.

Part 2:

Examine the Graph Modelling Language (gml) files

"socialmedia_cmt224_reply_network.gml" (reply network) and

"socialmedia_cmt224_social_network.gml" (social network) which represent data for a

sample of users on an online social platform. Both networks are directed and share the

same ids for nodes (anonymised users). However, the shared user ids are contained

within the "label" attribute in the .gml files, not the node "id" attribute of each individual .gml file.

In the social network, an edge from a node, u , to some other node, v, indicates that u follows v's posts on the social media platform.

In the reply network, an edge from a node, u , to some other node, v, indicates that u

replied to one or more posts made by v. Edges are weighted with the weight representing the number of times this happened over the time period the dataset represents.

Using these networks, answer the following questions:

Q1. Are the 10 users with the most followers the same as those that have the most repliers to their posts?

Q2. Does the number of users that a user follows correlate with the number of replies that they receive?

Q3. On average, is a user's list of repliers more likely to contain more followers or not followers?

Q4. How many users have only mutual following connections (i.e., every user they follow

also follows them) and only mutual reply connections with these same users?

Q5. Are occurrences of induced, connected subgraphs of 3 individuals (triads) with only mutual connections (where connections exist) more abundant in the reply network   than those with only asymmetric edges?

Part 3:

Examine the file "p2p_msg_cmt224.csv" which represents messaging behaviour between users on a messaging platform. Each row has four columns, representing a single event   where a person (person_a) messaged another person (person_b) on some date (date) at some time of day (time).

From this, answer the following questions:

Q1. Build two suitable networks, with one to represent social connections based on the

messaging behaviour that took place in the first 14 days only and another to represent  all message behaviour in the dataset. In doing so, assume that one or more messages from one person to another represents a mutual underlying social connection (i.e.,

regardless of whether person_a messaged person_b, person_b messaged person_a,   or both at some point). Explain any assumptions and choices you make in constructing the networks.

Q2. How does the topological structure of the networks differ in terms of the number of

people and connections, how the connections are clustered, and the median shortest distance between people?

Q3. What fraction of people that only exist after the first 14 days are connected to one or more people present in the first 14 days?

Q4. Using only the people that exist in both the network created from data from the first 14 days and the network built from all message behaviour, does the number of social connections grow between these people and can the social phenomenon, ‘Triadic Closure’ , be supported?

Q5. How does the maximum 'Degree of separation' change between the people present in the first 14 days and their connectivity after all messages? How does this compare with the maximum 'Degree of separation' after all messages for all people?



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图