代做EMET8002 Case Studies in Applied Economic Analysis and Econometrics Semester 1 2025 Week 5

EMET8002 Case Studies in Applied Economic

Analysis and Econometrics

Semester 1 2025

Computer Lab in Week 5

This week we continue to use the 2015 Programme for International Student Assessment (PISA) dataset for our analysis. PISA assesses skills of 15-year-old students across many countries and involves data on student performance (reading, mathematics and science knowledge), as well as parent, school and teacher questionnaires. The data is publicly available and can be downloaded from the PISA website under the section “SPSS (TM) Data Files (compressed)” (https://www.oecd.org/pisa/data/2015database/). However, these are large files and take some time to download and convert to Stata format. Therefore, we have prepared a smaller merged dataset of the Student and School questionnaire data files which now only includes the relevant variables. You can download this data (“Week4_PISA_data.dta”) from Wattle.

Question 1: Multinomial Logit Regression

We will run multinomial logit models with the following categorical variable as the dependent variable: “org_type” (“What kind of organisation runs your school?”).

(a) Exclude missing values for the following variables: repeated, school_size, age, male, international_lan, mother_edu, father_edu, quiet_study, good_listener, add_math, class_size, computer.

(b) Tabulate the variable “org_type”. How do you interpret the output? Create a label for the variable and values of “org_type” to make interpretation easier and tabulate the same variable again. [Hint 1 : -1 is coded for missing data, 1 means “A church or other religious organisation”, 2 means “Another not-for-profit organisation”, and 3 means “A for-profit organisation”; Hint 2: type in help label” in Stata for more suggestions].

(c) Run a multinomial logit regression with “org_type” as the dependent variable and the following independent variables: “male”, “age”, “international_lan”, “mother_edu”,   “father_edu”. Since the independent variables may contain missing values, include dummy variables that are equal to 1 if there is a missing value and 0 otherwise. [Hint: see “help mlogit” for suggestions]

(d) Why does Stata omit the following two dummy variables: “male_m” and “age_m”?

Run the multinomial logit regression from part c without these two dummy variables.

(e) Calculate the relative risk ratios. How do you interpret the output? [Hint: see “help mlogit” for suggestions]

(f)  Calculate predicted probabilities for a student to be at a church school, at a not-for- profit organisation and at a for-profit organisation if they are (i) male and 15 years old, (ii) female and 15 years old, (iii) male and 16 years old, and (iv) female and 16 years old. How do you interpret the output? [Hint: see “help margins” for suggestions]

(g) Compute the marginal effects for the “male” variable for each of the three possible outcomes ofthe dependent variable (church school, not for profit organisation, or for  profit organisation). How do you interpret the estimated coefficients? [Hint: see “help margins” for suggestions]

(h) How are predicted probabilities and marginal effects related?

Question 2: Ordered Logit Regression

For this question we use the variable “good_listener” as our dependent variable. This is a categorical variable which ranges between 1 and 4 with 1 being a poor listener and higher values indicating higher listening abilities.

(a) Explain how this dependent variable is different from “org_type” in Question 1 and why we would use an ordered logit regression in this case.

(b) Tabulate the variable “good_listener” and interpret the table. What does the value -1 mean?

(c) Run an ordered logit regression with “good_listener” as the dependent variable and

the following independent variables: “male”, “class_size”, “computer”, “international_lan” and age”. How do you deal with missing values in the dependent and independent variables? Interpret the output. [Hint: see “help ologit” for suggestions]

(d) Compute odds ratios for the same regression as in part c. How do you interpret the output? [Hint: see “help ologit” for suggestions]

(e) Calculate predicted probabilities for each of the four possible outcomes of “good_listener” for males versus females. Interpret the output.

(f)  Do a Brant test to check if the assumption of proportional odds that is required for an ordered logit model holds. Would you still use an ordered logit model? What are the  alternatives? [Hint: see “help brant” for suggestions. Most likely, you will need to install the package spost13_ado.pkg, which you can find by typing “findit spost13_ado” in Stata]

Question 3: Preparation for Research Project [not required for problem set]

We strongly recommend that you have chosen a paper by now, as the research proposal is due at the end of week 6, and the data collection process can also take some time. Students are also expected to have started the data application process by now. If you are unsure of the process, ask for help.

(a) Will you need any additional data for your extension? This is optional, as some extensions can be done using the same data as for your replication.

(b) In small groups, discuss what extensions you are planning for your research projects and why they are meaningful, interesting and worth investigating. Give feedback to each other about ways to improve the motivation of your extensions.

(c) Discuss the ethical issues and errors associated with the use of AI-assisted technologies. Note that for this course, the use of AI tools constitutes a breach of academic integrity. (The only exception is when students use Chat GPT or other AI tools when proof-reading, in which case this needs to be disclosed in a statement at the end of your assignment, and you may be asked to provide drafts from before and after the proof-read). If you are unsure of what is appropriate, ask for help.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图