代写FIT5147 Data Exploration and Visualisation Semester 1, 2025帮做Python程序

FIT5147 Data Exploration and Visualisation

Semester 1, 2025

Programming Exercise 1: Tableau (5%)

Please carefully review all the requirements below to ensure you have a good understanding of what is required for your assessment.

1. Instructions &Brief

2. Assessment Resources

3. Assessment Criteria

4. How to Submit

5.   Word Count & Penalties

1. Instructions & Brief

In this assignment you are required to read in some data and explore and visualise it using Tableau Public/Desktop, then also submit a brief report showing your findings and the visualisations you used. It is an individual assignment and worth 5% of your total mark for FIT5147.

Relevant learning outcomes for FIT5147:

1. Perform. exploratory data analysis using a range of visualisation tools;

6. Implement interactive data visualisations using R and other tools

THE DATA:

The data set used in this assignment is based on the AusStage online resource. It is “a data  set of live Events with dramatic and performance content covering all of Australia and New Zealand plus many additional International links” (AusStage, n.d.) and is regularly updated. While the data we are using was collected in February 2025, it includes both recent events  as well as ones from previous centuries.

We introduced this dataset in the Week 1 Workshop. For this assignment, use the provided PE1 dataset to produce your Tableau visualisations and visual analysis.  It is based on that found in AusStage but has been slightly modified.

To enhance your understanding of the context and metadata, you can check the data source link. Using the various interactive tools for the data source of the full dataset may help enrich your visual analysis: https://www.ausstage.edu.au/pages/learn/search-ausstage . If you discuss or replicate the visualisations or metadata provided by AusStage, be sure to reference these correctly in your report1.

Please note that the event and performance names relate to real Australian performance art and culture. Some names may have some explicit terms.

For this PE1 assignment, the resulting data describes when and where events occurred in the state of Victoria. In this activity we will explore the use of a few attributes:

Column

Description

Event Name

The title or name of an Event.

Event Identifier

A unique number identifying an Event in AusStage.

First Date Year

The year of the Event's first public presentation, including previews

First Date

The year (and day or month if known) of the Event's first public presentation, including previews

Last Date

The year (and day or month if known) of the Event's final public presentation.

Venue Name

The name of the Venue where an event happens.

Venue Identifier

A unique number identifying the Venue where an event happens.

Suburb

The suburb or local district where the Event happens.

State

The Australian state or territory where the Event happens.

Country

The country where the Event happens.

Primary Genre

The kind of Event, as defined by its main mode of performance.

Organisations

The name of the organisation/s associated with an Event.

Contributor Count

Number of contributing people recorded in AusStage for this Event.

Resources Count

Number of related resources recorded in AusStage for this Event

Longitude

Geographical Location (longitude) of the Venue

Latitude

Geographical Location  (latitude) of the Venue

Table 1: Fields of the “AusStage_S12025PE1” data set

In this data there are some irregularities or errors that were part of the original data. One of the requirements of this assignment is for you to find (using data visualisation), describe and handle them. This modified dataset can be found on Moodle in the Assessments section under the Programming Exercise 1 heading.

References:

AusStage. (n.d.). AusStage: About. AusStage. Retrieved February 27, 2025, from

http://www.ausstage.edu.au/pages/learn/about

VISUAL ANALYSIS QUESTIONS TO BE ADDRESSED

Using the data and visual analytics, you will need to answer the following questions:

1A.       What are the most common event names?

To answer this question, discuss how you are going to identify, measure and visualise what are the most common events.

1B.       How many events started each year over the last 25 years?

To answer this question, discuss how you are going to identify, measure and visualise the number of events started each year.

1C.        How many events were run or performed by each organisation?

To answer this question, treat each Organisations value as a single organisation, even  if it includes different groups. Discuss how you are going to measure and visualise the number of events for each organisation.

1D.       How many organisations started events each year over the last 25 years?

To answer this question, discuss how you are going to identify, measure and visualise the number of events started each year.

1E. How long did each event run for?

To answer this question, discuss how you are going to identify, measure and visualise the number of years each event ran in.

2.          Based on the visualisations and findings for 1A-E, is it possible for you to now

explain who (i.e., Organisation) ran or performed what events over the last 25 years?

For this question, you need to discuss whether your visual analytics for 1A-E have enabled you to answer this question or not. Be sure to explain how you came to that conclusion.

ASSESSMENT TASK

The task has two components: data exploration using Tableau, and a short written report. Data Exploration using Tableau:

The steps you are expected to complete:

1.   Load the dataset in Tableau Public/Desktop

2.   Use data visualisation in Tableau to check for and find at least two aforementioned irregularities in the dataset. Each type of irregularity may occur multiple times in the data. These irregularities are not related to missing data.

3.   Amend the data to correct these errors using any tool of your choice (e.g., Excel, Python, R, Tableau) and justify your choice of correction based on the irregularity.

4. Use Tableau to create at least one visualisation per question (not more than 2 per question) to conduct your visual analysis and answer the above question.

Remember to select appropriate visual variables to suit the data and your chosen visualisation.

5.   Polish up your visualisations for presentation, e.g.,  add a suitable title, correctly label your axis, make sure labels and values are not truncated, include a legend. Ensure the font, font size and colour are suitable and legible for your report.

6.   Write a report that presents and describes your data exploration process and visual analysis. See below for details.

This exploration must be submitted as a Tableau workbook file (*twb suffix).

Note: Indications of missing data like UNKNOWN/unknown, NULL/null, N/A, tba values should not be regarded as irregularities for this assignment.  If Tableau has any issues automatically recognising any date or time information, then this is not to be regarded as an irregularity for Step 2 but can be corrected by you in Tableau.

Written Report

Once you have finished your data exploration, write a report that contains the following information:

1.   Data loading, checking and cleaning (i.e., Steps 1 to 3)

o  A brief explanation (maximum of one paragraph per error) and an

accompanying image of each of the errors or irregularities that you have found, showing how you found them using Tableau, and explaining & justifying how you resolved them. The image must show a relevant visualisation, not just the data or a table.

2.   Data Exploration and Presentation (i.e., Steps 4 and 5)

o  Explanation of what insights you have found out through the visual analysis in order to answer the questions. This should include:

■   Your answer to the question, based on your visualisation(s). Include relevant visualisations in 1 or 2 figures per question.

.   Description of your visualisation(s) and how they relate to the data and question (i.e. why it is an appropriate visualisation choice)

.   Justification of your visualisation(s) and choice of visual variables

.   Any further insights, or issues that you have identified from the data or visualisation(s) while answering the question.

The report should also:

●    Be submitted as a PDF file

●    Be no more than 5 pages in length, including figures, with a minimum font size of 10 (title page and any table of contents are excluded from the page limit)

●    Be properly structured with headings, subheadings, figure captions (in-text  referencing of captions), page numbers, and references (where appropriate)

●    Have high quality images of your visualisations with clearly readable and legible text/labels (presume that it is read as part of an A4 document with no zooming).

●    You must use proper academic referencing for all reports in this unit. This should follow either the APA or IEEE  structure as recommended by the Faculty. Use the library referencing guide for support.

●    Not include any code snippets except for key Calculated Fields in Tableau.

No Generative AI software or system may be used to complete this assessment task. This includes using any software that paraphrases, translates or rewrites your text.

2. Assessment Resources

AusStage_S12025PE1.csv (Available on Moodle)

3. Assessment Criteria

The following outlines the criteria which you will be assessed against. The focus of the marker will be on what you have included in your report, but your submitted Tableau Workbook may be examined if there are any concerns with the academic integrity of your work.

●    Demonstrated ability to check and clean data and read into Tableau [1%]

●    Demonstrated ability to appropriately visualise data for data exploration using Tableau [2%]

●    Demonstrated ability to see trends/patterns in data [1%]

●    Quality of report [1%]

4. How to Submit

Once you have completed your work, take the following steps to submit your work.

1.   Save your report as a .pdf file.

2.   Name your file using the following structure PE1_Surname_StudentID

3.   Save your Tableau workbook as a .twb file.

4.   Compress the .twb workbook file into a .zip file so it can be submitted to Moodle. DO NOT include your report in your zip file, only your Tableau workbook.

5.   Name your zip file using the following structure PE1_Surname_StudentID

6.   Click the Add Submission button on Moodle to submit and upload your report and workbook

Please note that your assignment MUST show a status of "Submitted for grading" before it can be marked. Any submission left in draft mode will not be marked. We recommend always double checking your submission has been completed and that you have uploaded the correct files. Penalties will apply to any submission which needs amendment after the deadline.

5. Word Count & Late Penalty

The report must not be more than 5 pages of graded material including figures (min. font size 10). Up to 2 additional pages may be used if you wish, but restricted to:

1 page prior to the report as a title page with a table of content.

●   1 page after the report only for references.

1 mark (out of the total of 5) will be deducted if the report does not meet these requirements.

As per Monash policy: All late submissions will receive a penalty of 5% per day (0.25 marks per day out of a total of 5 marks) late inclusive, including weekends. Work submitted more than seven days after the due date will not be marked.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图