代做DTS103TC Design and Analysis of Algorithms代写留学生Python语言

Module code and Title

DTS103TC Design and Analysis of Algorithms

School Title

School of AI and Advanced Computing

Assignment Title

Coursework

Submission Deadline

Sunday, March 23rd 23:59 (UTC+8 Beijing), 2025

DTS103TC Design and Analysis of Algorithms

Individual Coursework

Due: Sunday March 23rd, 2025 @ 11:59pm

Weight: 40%

Maximum score: 100 points

Learning Outcomes Assessed

• A. Describe the different classes of algorithms and design principles associated with them; Illustrate these classes by examples from classical algorithmic areas, current research and applications.

• B. Identify the design principles used in a given algorithm, and apply design principles to produce efficient algorithmic solutions to a given problem.

•  C. Have fluency in using basic data structures in conjunction with classical algorithmic problems.

General notes

• Please read the coursework instructions and requirements carefully. Not following these instructions and requirements may result in loss of marks.

• The assignment must be submitted via Learning Mall to the correct drop box. Only electronic submission is accepted and no hard copy submission.

• All students must download their file and check that it is viewable after submission.

Documents may become corrupted during the uploading process (e.g.   due to slow internet connections).  However, students themselves are responsible for submitting a functional and correct file for assessments.

• Academic Integrity Policy is strictly followed.

• The use of Generative AI for content generation is not permitted on this assessed coursework. Submissions will be checked through Turnitin.

Coding Policy

Programming Language: All code must be written in Python, with a version of 3.6 or higher. Students are required to use Jupyter Notebook for their implementation, and the main file must be an ’ .ipynb’ file that includes all outputs (such as printed results, graphs, etc).

Code Structure: The code must be well-structured, readable, and properly documented. Comments should be included for each function and section, explaining its purpose and functionality. Each notebook cell must contain at one task only.  In other words, you can use several cells for one task but one cell cannot contain more than one task.

Libraries and Tools: Do not use any libraries or tools. Only the Python builtins and classes provided during the labs are allowed. For example, the class Node is allowed.

Code Validation: Ensure the code is fully executable without errors for each Jupiter Notebook

cell. All notebooks must be submitted with outputs included (e.g., printed results, graphs, etc), allowing the marker to verify the results without rerunning the notebook. Of course, the code of the cell must match the output of the cell.

Submission Policy

1. Submission Format

• Each student must submit a single ZIP file containing:

(a) The final report in PDF format.  The first page of the PDF report must be the cover sheet provided on Learning Mall.

(b) A single Jupyter Notebook (file name ending with .ipynb) must be provided.

2. File Naming

The ZIP file must be named in the format: Lastname_Firstname_StudentID_Coursework.zip.

The PDF report must be named in the format: Lastname_Firstname_StudentID_Coursework.pdf.

• Each individual’s code must be named in the format: Lastname_Firstname_StudentID_Code .ipynb.

Late Policy

5% of the total marks available for the assessment shall be deducted from the assessment mark for each working day after the submission date, up to a maximum of five working days.

Avoid Plagiarism

• Do not submit work from other students.

• Do not share code/work to other students.

• Do not read code/work from other students, discussions should be limited to high level only.

• Do not use open-source code. You must write your own solution and comment your code.

Overview

In this coursework, you are expected to design and implement algorithms to produce solutions to four given problems in Python.  You should have function(s) to receive task input as parameters, implement your algorithm design and return results.

1 Task 1 (20 marks)

Given an m × n grid filled with integers representing the weight of the crop in one cell (or crop area). A farmer (who is gathering the crops) starts at the top left cell and need to find a way to the bottom right cell. The farmer can only move either down or right. What is the maximum weight of crops the farmer can collect through its path from top left to bottom right?  Solve this problem with dynamic programming.

Example 1 of input grid:

10   4    8    3

6    7    5    1

2   4    2    2

Output: 32 because the path giving the maximum reward is 10, 6, 7, 5, 2, 2.

Example 2 of input grid:

10   4    8    3

6    7    5    1

20   4    2    2

Output: 44 because the path giving the maximum reward is 10, 6, 20, 4, 2, 2.

You should have a function named maxPathSum to receive the grid (List[List[int]]) and return the maximum reward (int).

2 Task 2 (20 marks)

Given a directed acyclic graph, use depth first search to find all the paths from node S to node T. Input example:

graph  =  {"S":  ["A","B"],

"A":  ["B","T"],

"B":  ["T"]}

Output:

[["S",  "A",  "T"],

["S",  "A",  "B",  "T"], ["S",  "B",  "T"]]

Answer: There are three paths: S → A → T, S → A → B → T, S → B → T

The adjacency list of the graph can be represented using a dictionary in python, where the keys are the nodes of the graph, and their values are a list storing the neighbors of these nodes. You should have a function named allPaths to receive the adjacency list represented as a dictionary and return a list of paths.

3.1 Introduction

A factory is producing n = 2l objects such that they all have the same weight w. However, the objects sometimes have a different weight and must be identified.  Suppose we are in the case where two objects among the n have different weights such that the first object has weight w1  and the second object has weight w2  with the following properties:  w1  < w2 < w and w1 + w2 = w. Given a list of weights, implement an efficient algorithm to find the index of the two objects with weight different than w. In this problem, we use a precision digital balance to measure accurately the total weight of a list of objects.

Input/Output pair example: weights  =  [w,  w,  w, w_2, w, w, w_1, w],  (3,  6)

In this example, there are n = 23  = 8 weights where w1  is at index 6 and w2  is at index 3.  In other words, (i1, i2) = (3, 6) and, in Python, we have weights[6]  =  w_1 and weights[3]  =  w_2.

The Python function containing your algorithm must be named findWeights2 with function argument named weights to receive a list of float numbers. The output of your function is a tuple of index (i1, i2).

3.2   Algorithm design

This section is meant to guide the student through solving the problem.  Suppose we divide the set of input objects in two disjoint subsets U1  and U2  of equal sizes.

1. At the first iteration (first division of the object list): how many objects are there in U1  and U2?

2. What are the possible values for the weight difference between U1  and U2?  (Hint:  negative weight differences are considered)

3.  In each case, in which set does w1 belong to? What about w2?

4.  In each case, what should the algorithm do? (4 points)

5. A sub-problem: we consider a simpler version of the problem with the following conditions:

• There are n = 2l  objects.

• Among the n objects, only one object has weight w0  < w.

The Python function containing your algorithm must be named findWeight1 with function argument named weights to receive a list of float numbers.  The output of your function is an index i.

6. Based on the previous questions, implement an efficient algorithm (the function is named findWeights2) to find the positions ofw1  and w2 . You may reuse the findWeight1 function.

7. What is the running time of your algorithm?

4   Task 4 (30 marks)

Given a list of intervals, merge all overlapping intervals and return the merged list.

Input example:  [[9,11],  [1,4],  [13,19],  [2,7]]

Output: the merged list should be [[1,7],  [9,11],  [13,19]].

1.  Identify the appropriate data structures and algorithms needed to solve this problem. For each choice, explain your solution in less than 200 words.

2.  Implement your solution in Python language. The function should be named mergeIntervals and receive as input as Python List

3. Provide 5 test cases of your algorithm.

4. Analyze the time and space complexity of your algorithm.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图