代做DMS2030 Individual Assignment 2代做回归

DMS2030

Individual Assignment 2

Due Date: 11:59 pm, March 9th, 2025

1. Customers walk into a bank and depart after receiving service at an average rate of 16 per hour.  There is one clerk in the bank serving the customers.  The arrival process is random but not Poisson.  Service time has an exponential distribution with a mean of 3 minutes.  On average there are 4 customers waiting in queue to be served.  On average how long does a customer wait in queue? (5 points)

2. City bank has a staff planning policy based on a maximum utilization level for each operation. For example, the allowable utilization for operation A is 70%. If the workload for this operation is expected to increase  in the  next  planning  period,  clerks  will  be  hired  to  ensure  the  utilization  to  be  about  70%. Conversely, if the workload is expected to decline, clerks will be assigned elsewhere as long as the 70% utilization rule is not violated. The manager believes that such a policy will allow the bank to maintain a specified customer waiting time, which  is  harder to  monitor.  An  internal study shows that for  most operations, there is significant variability in the job arrival pattern as well as the processing times for the jobs. Does this policy work correctly to achieve the specified customer waiting time? Please briefly justify your answer. No calculation is needed. (5 points)

3. An orange juice vending machine can make customers fresh orange juice upon their arrival. The time of making a cup of orange juice is fixed to be 10 min. On average, customers arrive every 15 min. However, the inter-arrival time is actually random, and follows exponential distribution. On average, how many customers are waiting to be served? On average, how many people are standing in front of the vending machine? (5 points)

4. The unloading dock of the warehouse of P&S Supermarket has a single crew of two workers. The whole crew is needed to unload a truck. Truck arrivals are Poisson with a mean of 3 trucks per hour while the unloading time per truck is exponential with a mean of 15 minutes. If a truck arrives and the crew is unloading another truck, the arriving truck joins the line of trucks waiting for service. Assume there is enough space to accommodate essentially any number of trucks waiting in the line.

(a) What is the average number of trucks in the waiting line? What is the average time a truck must wait in the line before receiving service? (5 points)

(b) The management is considering adding a second crew of two workers. There is sufficient space on the loading dock to allow two trucks to unload at the same time. Each unloading dock worker is paid $100 per hour while the hourly cost of a truck waiting is $500. Complete the following input table for using the Queue.xls. (5 points)

Number of servers m

Average interarrival time a

Average service time Ws

Coefficient of variation Cva

Coefficient of variation Cvws

(c) The following is the output of the Queue.xls Excel program. Each worker is paid $100 per hour while the hourly cost of a truck waiting is $500. Is there any economic justification for adding the second crew? (5 points)

Two Crews

Utilization factor P

0.375

Waiting time in queue Wq (min)

2.90

Flow time (or total time in the system) W (min)

17.90

Inventory in the queue Wq

0.1448

Inventory in the system L

0.8949

5. Expando, Inc. is considering the possibility of building an additional factory that would produce a new addition to its product line. The company is currently considering two options. The first is a small facility that it could build at a cost of $6 million. If demand for new products is low, the company expects to receive $10 million in discounted revenues (present value of future revenues) with the small facility. On the other hand, if demand is high, it expects $12 million in discounted revenues using the small facility. The second option is to build a large factory at a cost of $7 million. Were demand to be low, the company would expect $10 million in discounted revenues with the large plant. If demand is high, the company estimates that the discounted revenues would be $14 million. In either case, the probability of demand being high is 0.4, and the probability of it being low is 0.6. Not constructing a new factor would result in no additional revenue being generated because the current factories cannot produce these new products.

(a) Construct a decision tree for Expando. (10 points)

(b) What is Expando’s best decision? (5 points)

6. Peter has just finished a whole day’s work and wants to drive home as soon as possible. He can first drive on the Washington Avenue to get to the city hall, and then choose from one of the two roads to get home: the May Road or the Lin Road. He can also drive on the Ben Avenue to get to the museum first, and then choose from one of the two roads to get home: the Kings Road or the Queens Road. The following is a list of how much time he will NORMALLY spend on each route:

Washington Avenue: 10 minutes; May Road: 20 minutes; Lin Road: 15 minutes; Ben Avenue: 12 minutes; Kings Road: 12 minutes; Queens Road: 18 minutes.

There might be traffic jams on the four Roads. If a traffic jam happens, Peter has to DOUBLE THE NORMAL TIME on the road. A traffic jam never happens on the Avenues. The probability of a traffic jam on each road is: the May Road: 0.3; the Lin Road: 0.4; the Kings Road: 0.4; the Queens Road: 0.3.

Before arriving at the city hall (the museum), Peter cannot observe whether there are traffic jams on the May Road and the Lin Road (the Kings Road and the Queens Road) or not. He only knows the probabilities. A traffic jam is observable (if it happens) when Peter arrives at the city hall (the museum).

(a) Construct a decision tree for Peter. (10 points)

(b) Should Peter choose the Washington Avenue or the Ben Avenue at the beginning? (5 points)

(Hint: You will need to use the Rule of Multiplication of probabilities. For example, the probability that both the May Road and the Lin Road are jammed is 0.3 × 0.4 = 0.12. )

7. A post office requires different numbers of full-time employees on different days of the week.  The minimum number of full-time employees needed on each day is as follows:

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

7

4

5

10

3

6

2

Labor law states that each full-time employee must work five consecutive days and then receive two days off.  For example, an employee who works Monday to Friday must be off Saturday and Sunday.  The post office wants to meet its daily requirements using only full-time employees. Suppose that the daily salary for each worker is $10. The post office  is  considering how to minimize the weekly pay for full-time employees.

(a) What are the decisions variables in this problem? (5 points)

(b) Formulate the problem as a constraint optimization problem. (10 points)

(c) Now, suppose that employees must be paid double salary on weekends. Formulate the problem as a constraint optimization problem. (5 points)

8. O’Connel Airlines is considering air service from its hub of operations in Cicely, to Rome and Seattle. O’Connel has one gate at the Cicely Airport, which operates 12 hours per day. Each flight requires 1 hour of gate time. Each flight to Rome consumes 15 hours of pilot crew time and is expected to produce a profit of $2500. Serving Seattle uses 10 hours of pilot crew time per flight and will result in a profit of $2000 per flight. Pilot crew labor is limited to 150 hours per day. The market for service to Rome is limited to nine flights per day. O’Connel wants to obtain the highest possible profit.

(a) Formulate the problem as a constraint optimization problem. (5 points)

(b) Draw a graph to illustrate the constraints. (10 points)

(c) What is the best strategy for O’Connel? (5 points)

9. Any more suggestions/comments for the class? (Optional)



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图