代写DTS406TC Natur al Language Processing Coursework 1帮做Python编程

Module code and Title

DTS406TC Natural Language Processing

School Title

School of Artificial Intelligence and Advanced Computing

Assignment Title

Coursework 1 (CW 1)

Submission Deadline

5 pm China time (UTC+8 Beijing) on March23,2025

Final Word Count

3000

If you  agree to  let the university use your work  anonymously  for teaching  and learning purposes, please type “yes” here.

Policy

The report should be submitted in PDF format. The word count limit of the report is 3,000. All code must be written  in  Python.  It  should  be well-structured,  easy  to  read,  and  thoroughly documented. Each function should include comments explaining its purpose and functionality. Ensure that the code runs without errors. All required files should be included in a single zip file. A README  file is needed to explain how to run the  code and list any dependencies. The document must be submitted through Learning Mall Online to the appropriate drop box.

DTS406TC Natural Language Processing

Coursework 1 (Group Assessment)

Due: 5:00 pm China time (UTC+8 Beijing) on March23,2025

Weight: 40%

Maximum score: 100 marks (80 %  group marks + 20 %  individual marks)

Groupings: Each  group  consists  of 2-3  students.  You  are  free  to  select  your  own team members. Students who do not make a selection will be randomly assigned to a team . Once the teams are confirmed , no changes will be permitted.

Assessed learning outcomes:

A Systematically comprehend the theoretical foundations ofNatural Language Processing B Apply statistical  and   machine  learning techniques to process   and   analyze  natural language data

Overview

Sentiment Analysis is the process of determining whether textual content expresses a positive, neutral, or negative sentiment. With the vast amount of textual data (e.g., tweets, Reddit posts, reviews) generated daily, Sentiment Analysis can automatically identify users' attitudes from User-Generated  Content  (UGC),  assisting  companies  or  organizations  in  making  informed decisions.

1. Literature Review on Sentiment Analysis (20 Marks,  Individual Work)

a)    Overview of the sentiment analysis and its applications. Please provide three examples of real-life applications of sentiment analysis. (6 Marks)

b)   Please list three key challenges in sentiment analysis. (6 Marks)

c)    Please elaborate on two traditional methods (e.g., Naive Bayes, SVM) and two deep learning approaches (e.g., BERT, GPT) on the sentiment analysis. Meanwhile, discuss the advantages and disadvantages of each approach.  (8 Marks)

d) Each   team   member    should   individually   complete the   literature   review   on sentiment analysis. This section will be scored individually.

2. Data Collection (12 Marks, Group Work )

Collect two datasets of User-Generated Content (UGC) from platforms like Twitter, Reddit, or Weibo,  focusing on  sentiment  analysis  in  different  scenarios.  Each  dataset  should  contain  a minimum of 3,000 instances. Preprocess the datasets by performing tasks like stopword removal and tokenization. Finally, a statistical analysis of the two datasets should be conducted (e.g., the word distribution of the corpus). Notice that some UGC data may be downloaded from Kaggle if there are API restrictions preventing direct downloads from social platforms. (6 Marks/dataset x 2=12 Marks)

3. Algorithm Description & Implementation  (48 Marks, Group Work)

a)    Choose four approaches for the sentiment analysis task on the collected UGC datasets: two using traditional methods and two employing deep learning methods.   All  four approaches should be applied to each of the UGC datasets. Please provide the pseudo- code and briefly provide  the  comments for each function of the pseudo-code.  (5 Marks/algorithm x 4= 20 Marks)

b)   Develop a sentiment analysis system for each approach using Python. The implementation pipeline should include the following components: feature engineering (3  Marks,  e.g.,  converting  textual  data  to embedding space regarding to different approaches), algorithm implementation (3 Marks, with fine-tuning required for the deep learning approach), and metrics computation (1 mark). 7 Marks/algorithm x 4 = 28 Marks)

4. Results Analysis (13 Marks, Group Work)

a)    Provide the sentiment analysis results for each approach applied to the two UGC datasets. Select and apply three relevant metrics (e.g., precision, recall, and F 1 score) to assess the performance of the implemented models, with each metric worth 3 Marks. (9 Marks)

b)   Explain the reasons behind the model performance for each approach.    (1 Mark/algorithm x 4 = 4 Marks)

5. Report Writing (7 Marks, Group Work)

This coursework evaluates your understanding the challenges of the problem and the correctness of  the proposed algorithms. It also tests your professional skills in terminology  usage, presentation  of algorithms and experimental results, as well as the logical manner of the proposal. (7 Marks)

Submission

One of the team members must submit a single zip file. The zip file is named "TeamID_Coursework.zip". It includes:  a cover letter with the group member information and the final PDF reports. The final PDF reports includes the individual reports of literature review on the sentiment analysis and the group report. A folder labeled "algorithms" contains all the model  implementations,  data  preprocessing  scripts,  and  evaluation  scripts.  A  folder  labeled "data" contains all the datasets and the experimental results in the CSV format.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图