代写 MATH5905、代做 Python/java 程序
MATH5905 Term One 2025 Assignment One Statistical Inference University of New South Wales School of Mathematics and Statistics MATH5905 Statistical Inference Term One 2025 Assignment One Given: Friday 28 February 2025 Due date: Sunday 16 March 2025 Instructions: This assignment is to be completed collaboratively by a group of at most 3 students. Every effort should be made to join or initiate a group. (Only in a case that you were unable to join a group you can present it as an individual assignment.) The same mark will be awarded to each student within the group, unless I have good reasons to believe that a group member did not contribute appropriately. This assignment must be submitted no later than 11:59 pm on Sunday, 16 March 2025. The first page of the submitted PDF should be this page. Only one of the group members should submit the PDF file on Moodle, with the names, student numbers and signatures of the other students in the group clearly indicated on this cover page. By signing this page you declare that: I/We declare that this assessment item is my/our own work, except where acknowledged, and has not been submitted for academic credit elsewhere. I/We acknowledge that the assessor of this item may, for the purpose of assessing this item reproduce this assessment item and provide a copy to another member of the University; and/or communicate a copy of this assessment item to a plagiarism checking service (which may then retain a copy of the assessment item on its database for the purpose of future plagiarism checking). I/We certify that I/We have read and understood the University Rules in respect of Student Academic Misconduct. Name Student No. Signature Date 1 MATH5905 Term One 2025 Assignment One Statistical Inference Problem One a) Suppose that the X and Y are two components of a continuous random vector with a density fX,Y (x, y) = 12xy 3, 0 < x < y, 0 < y < c (and zero else). Here c is unknown. i) Find c. ii) Find the marginal density fX(x) and FX(x). iii) Find the marginal density fY (y) and FY (y). iv) Find the conditional density fY |X(y|x). v) Find the conditional expected value a(x) = E(Y |X = x). Make sure that you show your working and do not forget to always specify the support of the respective distribution. b) In the zoom meeting problem from the lecture, show that the probability that if there are 40 participants in the meeting then the chance that two or more share the same birthday, is very close to 90 percent. Problem Two A certain river floods every year. Suppose that the low-water mark is set at 1 and the high- water mark X has a distribution function FX(x) = P (X ≒ x) = 1? 1 x3 , 1 ≒ x <﹢ 1. Verify that FX(x) is a cumulative distribution function 2. Find the density fX(x) (specify it on the whole real axis) 3. If the (same) low-water mark is reset at 0 and we use a unit of measurement that is 110 of that used previously, express the random variable Z for the new measurement as a function of X. Find the cumulative distribution function and the density of Z. Problem Three a) A machine learning model is trained to classify emails as spam or not spam based on certain features. The probability that an email is spam is 0.3. The probability that the model predicts spam given that the email is actually spam, is 0.9. The probability that the model predicts spam given that the email is not spam, is 0.15. If a randomly received email is classified as spam by the model, what is the probability that the email is actually spam? b) In a Bayesian estimation problem, we sample n i.i.d. observations X = (X1, X2, . . . , Xn) from a population with conditional distribution of each single observation being the geometric distribution fX1|成(x|牟) = 牟x(1? 牟), x = 0, 1, 2, . . . ; 0 < 牟 < 1. The parameter 牟 is considered as random in the interval 成 = (0, 1) and is interpreted as a probability of success in a success-failure experiment. i) Interpret in words the conditional distribution of the random variable X1 given 成 = 牟. 2 MATH5905 Term One 2025 Assignment One Statistical Inference ii) If the prior on 成 is given by 而(牟) = 30牟4(1 ? 牟), 0 < 牟 < 1, show that the posterior distribution h(牟|X = (x1, x2, . . . , xn)) is also in the Beta family. Hence determine the Bayes estimator of 牟 with respect to quadratic loss. Hint: For 汐 > 0 and 汕 > 0 the beta function B(汐, 汕) = ÷ 1 0 x 汐?1(1 ? x)汕?1dx satisfies B(汐, 汕) = 忙(汐)忙(汕)忙(汐+汕) where 忙(汐) = ÷﹢ 0 exp(?x)x汐?1dx. A Beta (汐, 汕) distributed random vari- able X has a density f(x) = 1B(汐,汕)x 汐?1(1? x)汕?1, 0 < x < 1, with E(X) = 汐/(汐+ 汕). iii) Seven observations form this distribution were obtained: 2, 3, 5, 3, 5, 4, 2. Using zero-one loss, what is your decision when testing H0 : 牟 ≒ 0.80 against H1 : 牟 > 0.80. (You may use the integrate function in R or any favourite programming package to answer the question.) Problem Four A manager of a large fund has to make a decision about investing or not investing in certain company stock based on its potential long-term profitability. He uses two independent advi- sory teams with teams of experts. Each team should provide him with an opinion about the profitability. The random outcome X represents the number of teams recommending investing in the stock to their belief (based on their belief in its profitability). If the investment is not made and the stock is not profitable, or when the investment is made and the stock turns out profitable, nothing is lost. In the manager*s own judgement, if the stock turns out to be not profitable and decision is made to invest in it, the loss is equal to four times the cost of not investing when the stock turns out profitable. The two independent expert teams have a history of forecasting the profitability as follows. If a stock is profitable, each team will independently forecast profitability with probability 5/6 (and no profitability with 1/6). On the other hand, if the stock is not profitable, then each team predicts profitability with probability 1/2. The fund manager will listen to both teams and then make his decisions based on the random outcome X. a) There are two possible actions in the action space A = {a0, a1} where action a0 is to invest and action a1 is not to invest. There are two states of nature 成 = {牟0, 牟1} where 牟0 = 0 represents ※profitable stock§ and 牟1 = 1 represents ※stock not profitable§. Define the appropriate loss function L(牟, a) for this problem. b) Compute the probability mass function (pmf) for X under both states of nature. c) The complete list of all the non-randomized decisions rules D based on x is given by: d1 d2 d3 d4 d5 d6 d7 d8 x = 0 a0 a1 a0 a1 a0 a1 a0 a1 x = 1 a0 a0 a1 a1 a0 a0 a1 a1 x = 2 a0 a0 a0 a0 a1 a1 a1 a1 For the set of non-randomized decision rules D compute the corresponding risk points. d) Find the minimax rule(s) among the non-randomized rules in D. e) Sketch the risk set of all randomized rules D generated by the set of rules in D. You might want to use R (or your favorite programming language) to make the sketch precise. 3 MATH5905 Term One 2025 Assignment One Statistical Inference f) Suppose there are two decisions rules d and d∩. The decision d strictly dominates d∩ if R(牟, d) ≒ R(牟, d∩) for all values of 牟 and R(牟, d) < (牟, d∩) for at least one value 牟. Hence, given a choice between d and d∩ we would always prefer to use d. Any decision rule that is strictly dominated by another decisions rule is said to be inadmissible. Correspondingly, if a decision rule d is not strictly dominated by any other decision rule then it is admissible. Indicate on the risk plot the set of randomized decisions rules that correspond to the fund manager*s admissible decision rules. g) Find the risk point of the minimax rule in the set of randomized decision rules D and determine its minimax risk. Compare the two minimax risks of the minimax decision rule in D and in D. Comment. h) Define the minimax rule in the set D in terms of rules in D. i) For which prior on {牟1, 牟2} is the minimax rule in the set D also a Bayes rule? j) Prior to listening to the two teams, the fund manager believes that the stock will be profitable with probability 1/2. Find the Bayes rule and the Bayes risk with respect to his prior. k) For a small positive ? = 0.1, illustrate on the risk set the risk points of all rules which are ?-minimax. Problem Five The length of life T of a computer chip is a continuous non-negative random variable T with a finite expected value E(T ). The survival function is defined as S(t) = P (T > t). a) Prove that for the expected value it holds: E(T ) = ÷﹢ 0 S(t)dt. b) The hazard function hT (t) associated with T . (In other words, hT (t) describes the rate of change of the probability that the chip survives a little past time t given that it survives to time t.) i) Denoting by FT (t) and fT (t) the cdf and the density of T respectively, show that hT (t) = fT (t) 1? FT (t) = ? d dt log(1? FT (t)) = ? d dt log(S(t)). ii) Prove that S(t) = e? ÷ t 0 hT (x)dx. iii) Verify that the hazard function is a constant when T is exponentially distributed, i.e.,

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图