代做STAT 321 Winter 2025 Assignment 3代做留学生Matlab编程

Assignment 3

STAT 321 Winter 2025

Due: Friday March 14, 5:00PM

1.  (8  points)  Suppose we have a dataset with continuous response  Y Rn ,  and two

continuous predictors x ∈ Rn  and z ∈ Rn. Suppose the predictors are both centered:

Define (βˆ0 ,βˆx ,βˆz ), the estimate of the unknown regression coefficients in the (multiple)

linear regression model

Yi  = β0 + βxxi + βz zi + ϵi.

Define (β0, βx ) and (β0, βz ), the estimates of the unkown regression coefficients in the (simple) linear regression models

Yi  = β0 + βxxi + ϵi ,     Yi  = β0 + βz zi + ϵi

respectively.

Show that if the sample correlation between x and z is 0, βˆ x = β˜ x, βˆ z = β˜ z, and
{s.e.(β(ˆ)x + β(ˆ)z )}2  = {s.e.(β(ˆ)x )}2 + {s.e.(β(ˆ)z )}2 .

2.  (15 points) In the next two problems, you will work with data in 321divorce . csv, located on Learn under Assignments/Datasets. The data contains information about annual divorce rates among American women.  More information about the data can be found by installing the faraway package and running the following line of code:

?faraway:: divusa

Fit an MLR model with divorce as the reponse and all other variates as the predictors.

(a) Report the variance inflation factors  (VIFs) for this model.   Is  there any evi- dence of extreme multicollinearity?  Draw and interpret a scatter plot of the two predictors with the greatest sample correlation.

(b)  Plot the fitted values against the residuals, and plot each predictor variate against the residuals. Describe at least two patterns in the plots which do not agree with the MLR modelling assumptions.

(c)  Use at least one plot to check the normality assumption for the errors.

(d)  Use at least one plot to check for high leverage and high influence years. For the three highest leverage years, report their predictors and explain why these are high leverage points.

(e)  Use at least one plot to check for autocorrelation in the errors.

3.  (10 points) Using the 321divorce . csv dataset from Problem 2, implement the follow- ing variable selection methods to determine the best model, with response divorce and all other variates as possible continuous predictors.

(a) Backwards elimination (with level α = 0.05)

(b) Adjusted R2

(c) AIC

4.  (10 points) In this problem, similar to Assignment 2 Problem 5, you will simulate new random response vectors to inspect properties of our MLR confidence intervals. Use the predictor matrix X  ∈ R30 ×3 from Assignment 2, Problem 5 (the data can also be loaded directly from 321galapagos . csv, located on Learn under Assignments/Datasets), and set the model parameters to

(a)  Simulate a new random response vector Y  = Xβ  + ϵ where the entries of ϵ are mutually independent and satisfy

ϵi  = 50 · Ti ,     Ti  ~ t(3),     i = 1, . . . , 30.

Fit a linear regression model with response Y  and predictor matrix X  and create a QQ-plot of the residuals. Describe the pattern in the QQ-plot.

(b)  Repeat the procedure in part (a) 1000 times, and for each replication store the

estimated regression coefficients, Report the sample means of

Compare these to the theoretical mean we  derived in class for the regression coefficient estimator.

(c)  Repeat the procedure in part  (a)  1000  times,  and for each replication store a 99% confidence interval for β1 .  Report the proportion of replications in which the confidence interval contains the true expected response.  Do these intervals actually cover the true parameter in 99% of replications?

Additional instructions:

– If you are unsure how to use an R function, its documentation can be viewed by typing a question mark and then the function name (i.e. ?function) into the RStudio console.

– Unless otherwise specified, you may use results from lecture without additional justification. Results from the reference textbooks can be used, but you should show all steps for full marks.

– This assignment will be graded out of 43 points. Per the course outline, in normal circumstances it will count for 5% of your final grade.

– Assignment solutions, including code, should be submitted on Crowdmark. Make sure that the uploaded solutions correspond to the correct problem. If the assignment is submitted with written solutions but no supporting code, it will be graded as normal, but the point total will be multiplied by 0.75.

– If you experience technical difficulties using Crowdmark,

1. Consult Crowdmark Help

2. Watch this short video about submitting an assignment on Crowdmark

3. As a last resort, if you cannot upload your assignment to Crowdmark before the deadline, email it to [email protected], so I have proof that you completed your assignment on time.

– If you choose to submit typed solutions, please also email me the .tex or RMarkdown files used to compile your solutions.

– Rules regarding extensions for (formally documented) absences and grades for late submissions are provided in the course outline on Learn.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图