代写DTS206TC Applied Linear Statistical Models Coursework代写留学生R程序

DTS206TC Applied Linear Statistical Models

Coursework

Due: Sunday March. 16th, 2024 @ 11:59pm

Weight: 40%

Maximum score: 100 points

Learning Outcomes Assessed

• A. Demonstrate knowledge and understanding of basic principles of R programming language.

• B. Demonstrate understanding of the significance of linear regression models and ANOVA tables.

• C. Show understanding of the rationale and assumptions of linear regression models.

• E. Carryout and interpret linear regressions and analyses of variance, and derive basic theoretical results.

Submission Policy

1. Submission Format

• Each student must submit both report and codes:

(a) The final report in PDF format.

(b) The code in .R format. If multiple code files are to be submitted, please create a code folder.

2. File Naming

• The files and folders should be named as follows: StudentID_report.pdf, StudentID_code .R, or StudentID_codes .zip if you are submitting a folder with code.

3. All submissions must be written in English.

4. Please do NOT include the data in the folder if the data is more than 80M. If you would like to share the data, please upload it to any e-Drive and paste the share link in the report (as reference or footnote).

5.  Coverpage should be inserted in the report.

6. Page limit: No more than 16 pages.

Late Policy

5% of the total marks available for the assessment shall be deducted from the assessment mark for each working day after the submission date, up to a maximum of five working days.

Avoid Plagiarism

• Do not submit work from other students.

• Do not share code/work to other students.

• Do not copy code/work from other students.

• Do not use content generated by AI tools.

1 Coursework Overview

This coursework aims to provide students with practical experience in data analysis, linear regression, and ANOVA analysis using the R programming language. The task will involve exploring a dataset of your choice, performing various statistical analyses, and interpreting the results with a focus on understanding and applying the key principles of linear regression models,ANOVA, and diagnostics. The overall goal is to demonstrate your ability to use R to perform a thorough analysis, assess the fit of the model, and address any issues or violations of regression assumptions through appropriate diagnostic and remedial measures.

The coursework is divided into the following key sections:

2   Data Analysis & Visualization (15 marks)

1. Describe the dataset and the variables of interest (5 Marks)

• Provide a clear description of the dataset you have chosen for your analysis. Include relevant details such as the source of the data, the variables it contains, and the key characteristics of the data. Highlight which variables are of particular interest in your analysis.

•  Include the dataset name and source, and a summary of the variables (both dependent and independent variables), and a brief discussion of why you have chosen these variables for analysis.

• For example, you can use datasets from sources like the UCI Machine Learning Repository or Kaggle competitions, such as the Boston Housing Dataset or the Student Performance Dataset. These are just a few examples; feel free to choose a dataset that aligns with your interests.

2. Perform. Exploratory Data Analysis (EDA) using R functions/packages (5 Marks)

• Perform. EDA to understand the structure of your data, identify any patterns, and detect potential issues (such as missing values or outliers).

•  Summary statistics (mean, median, standard deviation, etc.).

•  Identify any missing values or outliers.

• Use R functions (e.g., summary(), str(), head(), summary(), etc.) to gain insights into the dataset.

3. Visualize the relationships between variables using scatter plots, histograms, etc. (5 Marks)

• Use appropriate graphical techniques (e.g., scatter plots for continuous variables, histograms for distribution of individual variables).

• Plot relationships between independent and dependent variables.

• Discuss the insights gained from the visualizations.

3   Linear Regression (20 Marks)

1. Perform. Simple Linear Regression Analysis (5 Marks)

• Use R to fit a linear regression model (e.g., lm() function).

• Ensure the choice of dependent and independent variables is well-justified.

2. Specify the Regression Model, Explaining the Choice of Independent and Dependent Variables (5 Marks)

• Write the equation of the regression model.

• Explain the rationale behind selecting each variable for the model (e.g., why certain variables are considered independent and others dependent).

3. Interpret the Regression Coefficients (5 Marks)

• Provide an interpretation of the regression coefficients, including their magnitude, direction, and significance.

• Explain the meaning of the slope and intercept in the context of the problem.

• Provide interpretations of each coefficient in relation to the dependent variable.

4. Assess the Goodness-of-Fit of the Model (R2, Adjusted R2) (5 Marks)

•  Calculate and interpret R2  and adjusted R2 .

• Assess how well the model fits the data and whether any improvements are necessary.

4   ANOVA Analysis (15 Marks)

1. Construct the ANOVA Table (5 Marks)

•  Construct the ANOVA table using R, ensuring it accurately displays all key metrics (SSR, SSE, SSTO, df, F-value, etc.).

• Ensure the format is correct and all calculations are accurate, consistent with the regression model results.

2. Interpret the ANOVA table (5 Marks)

• Explain the meaning of each metric in ANOVA Table.

• Briefly explain how to compute SSR, SSE, and SSTO, and describe their significance in ANOVA.

• Discuss the significance of factors on the dependent variable, and determine whether the independent variables significantly impact the dependent variable.

3. Applying the F-Test (5 Marks)

• Explain the basic principle of the F-test, including how F-values are calculated and their application in ANOVA.

• Based on the F-test results, assess the overall significance of the independent variables in the regression model, and explain how this affects the conclusions of the study.

5   Diagnostics & Remedial Measures (15 Marks)

1. Perform. Diagnostic Checks for Linear Regression Models (8 Marks)

• Residuals vs Fitted: Check for linearity (patterns indicate non-linearity).

• Residuals vs Leverage: Check for homoscedasticity (fluctuations indicate heteroscedasticity).

• Residuals vs Time: Check for independence (trends suggest violation).

•  Q-Q Plot: Assess normality (deviations indicate non-normality).

• Histogram: Verify if distribution is bell-shaped.

2. Identify and Address Violations of Assumptions (7 Marks)

• Discuss Violations.  Describe observed issues (e.g., non-linearity, heteroscedasticity) and their impact.

•  Implement appropriate remedial measures to address any issues identified.

6 Conclusion (5 Marks)

• Provide a clear summary of the linear regression results, including model performance and key coefficients.

• Discuss the implications of the results and any insights gained from the analysis.

7 Report Writing (30%)

1. Structure and Organization (15 Marks)

•  Clear and Concise Manner, with Appropriate Headings and Subheadings.

•  Clarity and Organization of the Report. The report should be cohesive, with ideas flowing logically. Transitions between sections should be smooth.

• The report should maintain a high standard of academic professionalism, with formal language, correct grammar, and proper formatting.

2. Analytical Depth and Accuracy (10 Marks)

• Provide a thorough, well-explained regression analysis. This includes data analysis, model specification, assumption checks, and interpretation of results.

• All R code should run correctly, producing accurate outputs.

    3. Technical Demonstration and Originality (5 Marks)

•  Include relevant R code snippets demonstrating the analysis and visualization steps.

• The code should be well-commented to explain the methodology and logic behind it.

• The report should demonstrate independent thought and creativity. Any external resources should be properly cited.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图