代做MSCI512: Simulation and Stochastic Modelling 2024/25 Coursework Task代写Python语言

MSCI512: Simulation and Stochastic Modelling

2024/25 Coursework Task

Task instructions (please read carefully)

•   The coursework consists of three problems that require the application of stochastic modelling or simulation.

•    Provide an answer for all three problems.

   The maximum score is 100:

•    Question 1 is worth 25 marks

•    Question 2 is worth 20 marks

•    Question 3 is worth 45 marks

•   A further 10 marks will be awarded for the clarity of the report writing.

•   You are expected to use appropriate software (e.g. Microsoft Excel,R, Python, Simul8) to help you answer the questions.

•   This coursework is related to all parts of the module.  You may use any method from the course to approach the problems.

•    For all questions describe and justify the assumptions you are making with your model, as well as any potential limitations.

•   When providing a numerical answer that does not involve a confidence  interval, report it correct to at least 3 significant figures.  Also, when using non-exact numbers obtained from aprevious calculation, make sure these numbers are correct to at least

3 significant figures.

•   This coursework is to be done as part of a group of two or three. Collusion between groups and plagiarism are regarded as serious offences and will be penalised severely. Information about the university’s  plagiarism framework can be found   here: https://modules.lancaster.ac.uk/mod/resource/view.php?id=1384800 .

Submission instructions

   The deadline for submission is 9:00AM on March 24th 2025.

•   Only one member of the group is required to make the submission.

•   Your answers to the questions can be either typed (e.g. using Microsoft Word) or handwritten and scanned.

•   You should include full details of your methods in your answers.   If you  calculate answers by hand, you should include all of your calculation steps.  If you use computer software (e.g. spreadsheets, computer programs) you should include the relevant files (e.g. .xlsx, .py, .txt, .s8) in your submission.  Please also include enough explanation in your answers to make it clear what you are doing and why.

Question 1 [25 marks]

A call centre operates 24 hours a day, 7 days a week. When a customer calls, they wait for one member of staff to take their call. All members of staff are cross-trained and so are able to handle all parts of the enquiry. After the enquiry has been fulfilled, the call ends and the staff member is free to take the next call.

The staff all work in 8-hour shifts in the following pattern:

•   6am - 2pm

•   2pm - 10pm

•    10pm - 6am.

The call centre managers are concerned about the current quality of service, measured by the number of calls waiting to be handled. They are therefore considering how many staff are required, and how best to allocate them between the shifts.

The call centre has hourly counts of the number of arrivals for 2 weeks. It also collected the time spent speaking to a member of staff for all customers in this period. Using this data, answer the following questions.

(a)  Using a stationary approach, estimate the average number of servers (per shift) that are required for this system such that at least 40% of calls are answered immediately, without having to wait.

(b)  Using a total of 3 times the number of servers identified in part (a), allocate these across the three shifts in away that controls the expected number of calls currently ongoing and the probability of having to wait in the best way.

In reality, the telephone network at the centre can only handle a finite number of calls at anyone time. If the network is full,a new call will be declined. The network could be setup to hold 15 calls, 25 calls, 50 or 100 calls. The cost is of each configuration is approximately linear in the number of calls. The managers will need to decide which togo for.

(c)  Explore how the different call capacities impact your answers from above. For each case, when does the probability of a call being declined reach its maximum, and what value does this take? What would your recommendation be in caller capacity? Provide a description of any models used and detail any assumptions that you make.

Question 2 [20 marks]

A local removal firm offers two short term services, a self-drive van-hire in which the customer hires the van but drives the van themselves, and a full removal service in which the firm also provides a team to move the customer’s belongings. All jobs generally take one day. The company will only accept up to 5 customers for each service at a time. If the number of customers on the books for the following working day goes above 5 for either service, no more work is accepted on that service.

The income from the self-drive service is £40, whilst for the full removal service, the income is £60. However, if the firm are notable to complete a job the next working day, the customer is offered a discount of £15 or £20 for the two services, respectively. If the customer still hasn’t been served, they are offered a further discount of equal amount.

Currently, the firm has 5 vans, three of which are set up to be insured to be driven by hiring customers (and are used exclusively for this purpose), and two which are just used by the company for the full removal service.

The company has provided data showing the number of requests made in each day and the number of customers on the books (at the end of a day over a period of the last 6 months    (130 working days).

(a)  In the long run, what is the average operating profit per day in this way? On what proportion of the days are not all the vans busy? On what proportion of days might work be turned away?

Suppose that the company could hire up to an additional 2 vans on any given day. The cost of hiring a van is £50. These vans could be allocated to either of the services.

(b) Considering a time horizon of 28 days, determine a policy that states when it is best to hire one van or two vans, and to which services should they be allocated, based on the number of jobs currently in the books.

(c)  If this policy were to start 5 days after the end of the data period you have, what would the expected operating profit be?

(d) Suppose there was a chance of negotiating the van hire cost. Considering a range of values, how would this change the decisions and the expected operating profit?

Provide a description of any models used and detail any assumptions that you make.

Question 3 [45 marks]

A fast-food restaurant in Lancaster is currently going through a refurbishment and is looking to introduce two new features when it reopens. The first is that it will offer a delivery service, just open between 4pm and 9pm. It will also only be available to those as far south as Galgate, as far north as Slyne and Hest Bank and to the west into Morecambe. They believe this will help them to attract more customers and so increase revenue, complementing the people who arrive at the restaurant in person (some of whomeat in, whilst others take away). Their projection, based on a local survey, is that this could be as high as an increase of 10%.

The second is that it will replace its current ordering process with some large touchscreen self-service machines that send the order directly to the kitchen. They hope this will help them reduce costs and potentially improve the time it takes to serve a customer.

This will also mean that the layout of the restaurant will have to change. Currently there are 30 tables in the restaurant. However, for each automated system they install, they will need to lose 2 tables. Their experience is that people who sit in the restaurant to eat sometimes come back for an additional order, such as getting a dessert or a coffee. Whilst they want the time between the arrival and the food being prepared to be small, they don’twant to lose too many tables and therefore lose sales.

The current procedure is as follows. The customers arrive and order their food (currently by speaking to a member of staff, but this will move to the self-service machines on re-opening). After this, the food is prepared by one of 6 members of staff. Once the food is prepared, the customers can theneither take this food away and eat it elsewhere or find a   table and sit in the restaurant while they eat. If all the tables are taken, customers generally take their food out. As previously mentioned, some of the customers who eat in may come  up to reorder food and can theneither sit in (usually this second period of time is shorter than the first) or take away.

For food that is being delivered, the order will go straight to the kitchen. Once the food is ready, it will be set aside ready for a courier (employed by the restaurant) to deliver. They are thinking that a sensible target would be to deliver the food within an hour.

The managers need to decide:

1.   How many couriers should they employ?

2.   How many self-service order machines should be installed? The key performance measures to bear in mind are:

•   The percentage of food orders which are delivered within 1 hour of the order being submitted.

•   The time it takes between a customer arriving and receiving their food.

•   The expected number of orders completed per day. The data available are

•   The number of arrivals per hour to the restaurant over a two-week period.

•    Manufacturer time trial data on how long it takes to use the self-service system.

•    For some customers in one day, the following information was tracked:

o How long it took to prepare food for an order

o How long they stayed in the restaurant (if they did), following the order,

o If they went for a second order, how long it was before this food was ready and how long they stayed after that (if they did)

•    For the time to deliver, no data is yet available. However, the restaurant has asked local couriers to provide some data. They expect that collecting the order and going back to a vehicle will take at least five minutes. Travel times for the area identified are likely to be less than 15 minutes, often around the 8-12 minutes mark.

Produce a report to advise the restaurant owners on these issues. Consider how sensitive the results are to some of the assumptions made. Include details of any models developed. [25 marks for conceptual and computational model, 20 marks for analysis].





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图