代写CMT316 Applications of Machine Learning: Natural Language Processing and Computer Vision Coursewor

Assessment Proforma 2024-25

Key Information

Module Code

CMT316

Module Title

Applications of Machine Learning: Natural Language Processing and Computer Vision

Assessment Title

Coursework 2 (Group Project)

Assessment Number

2 of 2

Assessment Weighting

50%

Assessment Limits

Part 1 Group report:  Agroup project report of no more than 4500 words, a zip file with all the Python code for the group project and a README file

Part 2 Individual reflection essay: no more than 1500 words.

The Assessment Calendar can be found under ‘Assessment & Feedback’ in the COMSC-ORG-SCHOOL organisation on Learning Central. This is the single point of truth for (a) the hand out date and time, (b) the hand in date and time, and (c) the feedback return date for all assessments.

Learning Outcomes

The learning outcomes for this assessment are as follows:

1.  Implement and evaluate machine learning methods to solve a given task

2.  Explain the fundamental principles underlying common machine learning methods

3.  Choose an appropriate machine learning method and data pre-processing strategy to address the needs of a given application setting

4.  Reflect on the importance of data representation for the success of machine learning methods

5.  Critically appraise the ethical implications and societal risks associated with the deployment of machine learning methods

6.  Explain the nature, strengths and limitations of an implemented machine learning technique to an audience of non-specialists

7.  Explain the fundamentals and modern principles of natural language processing or computer vision

Submission Instructions

The coversheet can be found under ‘Assessment & Feedback’ in the COMSC-ORG- SCHOOL organisation on Learning Central.

All files should be submitted via Learning Central.  The submission page can be found under ‘Assessment & Feedback’ in the CMT316 module on Learning Central.  Your submission should consist of multiple files:

This coursework consists of a group project divided into two parts with different weights:

-    Part (1) consists of a group report on a specific machine learning project. The final deliverable consists of a single PDF file and a zip file with the code. The deliverable includes a zip file with the code, and a written summary (up to 4500 words) describing solutions, design choices, evaluation and a reflection on the main challenges faced during development and insights gained throughout the process.

-    Part  (2)  consists  of  an individual reflective  essay (up to  1500  words)  where students reflect on the main insights gained as part of the group project. Cover sheet should also be submitted in this part.

Description

Type

Name

Part

Compulsory

One PDF (.pdf) file for group

groupreport_[group number].pdf

1

report

Part 1

Compulsory

One ZIP (.zip) file containing the Python code

groupcode_[group number].zip

Part

Compulsory

One PDF (.pdf) file for cover

coversheet_[student number].pdf

2

sheet

Part

Compulsory

One PDF (.pdf) file for the

individualessay_[student

2

individual essay

number].pdf

Part 1: The group report should be submitted in learning central (group assignment) by a nominated team member as a single PDF document and a zip file. Prior to handing in, make sure all documentation has been collected. Additional supporting material, such as sources or data may also be submitted if appropriate along with the code zip file. Any code submitted will be run in Python 3 and must be submitted as stipulated in the instructions. All team members must have seen and agreed to the final version of the submission. Make sure the report clearly mentions your group number, a list of all members of the group (with full name and student ID as on learning central), the project title, and the name of the supervisor on the title page of your report.

Part 2: Individual submission for the cover sheet and individual reflective essay.

Any deviation from the submission instructions above (including the number and types of files submitted) may result in a mark of zero for the assessment or question part.

If you are unable to submit your work due to technical difficulties, please submit your work viae-mailto comsc-submissions@cardiff.ac.ukand notify the module leader.

Assessment Description

In this coursework, students demonstrate their familiarity with the topics covered in the module via a group project.

Marks will be awarded to the individual student based on the quality of the group report and their contribution and the  individual  report. All  students should  contribute to the group projects - extenuating circumstances submitted for the spring term project period will be considered pro-rata for the contribution and for an extension on the individual essay.

Part 1: Group report

In Part 1, students will be allocated in groups to design a machine learning project in one

specific topic. The list of all topics along with their descriptions is available in the following link: https://docs.google.com/document/d/1P8jc81L_HW3DDdZaIMfMcekrPeDYuBm- 2qTC7knbKV8/edit?usp=sharing

Each group will be assigned a specific dataset and a supervisor. The task of each group consists of developing a whole machine learning pipeline that attempts to solve the task. The usage of neural networks as methods/baselines is not mandatory but will be positively assessed; the non-usage of neural methods should be properly justified.

Throughout the course the groups should present their progress to their supervisor each session. Finally, the group will write a report summarizing the steps followed and the main insights gained as part of the process.

As part of the group decisions, each student will be allocated to one of the following tasks:

-    Descriptive analysis of the dataset + Error analysis

-    Preprocessing + Literature review

-    Implementation + Results

Each of these tasks will typically have two students involved (except in exceptional cases when this is not possible), who will work together in the specific task and as part of the group. The structure of the report will be decided by the group members. In the following link, students can find some guidelines to write the  report,  including  some of the  common sections that groups may want to include in their report:

https://docs.google.com/document/d/1ku-K6mBH8-

Wdfy_Dz_gvpReDv6knWCFxq4rsMDCrPHY/edit?usp=sharing

Note: These are just guidelines and students are not forced to follow this structure. New sections may be added or adjusted if necessary.

Each student will also be involved in all group activities/tasks and will be responsible for the well functioning and coordination of the team members.

Deliverables

The deliverables for this part include a report of no more than 4500 words and a zip file with the Python code. The code should contain three specific parts:

(1) Code to get the statistics used to complement the descriptive analysis of the dataset.

(2) Code to train one of the best performing models in the training set and evaluate it in the test set. This code should also include all steps for preprocessing the original dataset, if it were necessary.

(3) A README file explaining how to run the code for each of the two parts.

The code will not be marked separately and will only be used as a complement to assess specific parts of the report.

Part 2: Individual reflection essay

In Part 2, students are asked to write a reflective essay about their group projects. The individual essay must discuss your contribution to the group report and to the overall group work. You must show that you contributed to the group work, which will be determined via the individual report and the contribution monitoring, conducted by the supervisor, if it were necessary. Explain what tasks you have performed and provide evidence of your work (you may refer to the group report for the actual work/results). Discuss how you approached these tasks and how you interacted with other members, both in sharing your results and in organising the team's activities. Consider how well your existing skills were utilised and what new skills you have learned. Then reflect on your overall performance and role in the team and suggest what went well and what changes you will be making to improve (1) your performance in particular, and (2) the performance and results of methods and analyses performed as part of the project. You may also reflect on how your perspective and approach changed over time and adapted to improve your work.

Note: Please indicate the information about your group (group number, project name) in a visible place at the top of your essay.

The individual essay must have no more than 1500 words. It does not have to be exhaustive, but should contain good examples of what you have done and discuss key aspects. This part weighs 25% of the total marks.

Assessment Criteria

Criteria for each individual part is provided separately.  The final mark will be obtained from a weighted sum of the two parts: Part 1 - 75%; Part 2 - 25%.

The final mark for Part 1 (75% of the total marks) will result from the following items:

-    Descriptive analysis of the dataset + Error analysis (15%)

-    Preprocessing + Literature review (15%)

-    Implementation + Results (15%)

-    Student’s own allocated task from the three above (15%)

-    Group report as a whole, including its coherence and structure (15%)

Note: In addition to the specific individual task assigned, in some cases marks might be weighted by the individual contribution in the project. This would be based on collected evidence.

All main criteria carry equal weight as  indicated above for your total  mark and will  be evaluated on the following scale:

T1-1. Descriptive analysis of the dataset (7.5%)

High Distinction 80%+

Thorough and insightful data exploration.

Distinction 70-79%

Extensive and informative data exploration.

Merit

60-69%

Good data exploration but misses some insightful analysis.

Pass

50-59%

Suitable but limited data exploration.

Marginal Fail 40-49%

Little and arbitrary data exploration.

Fail

0-39%

No or meaningless data exploration.

T1-2. Result analysis (7.5%)

High Distinction 80%+

Thorough and critically insightful result analysis and discussion.

Distinction 70-79%

Comprehensive and insightful result analysis and discussion.

Merit

60-69%

Good result analysis and discussion but lack of depth.

Pass

50-59%

General result analysis and discussion.

Marginal Fail 40-49%

Little result analysis and discussion.

Fail

0-39%

No or little meaningful result analysis and discussion.

T2-1. Preprocessing (7.5%)

High Distinction 80%+

Innovation and extensive pre-processing to deal with all aspects of non-ideal characteristics of the data with an aim to achieve the best performance

Distinction 70-79%

Extensive pre-processing to deal with major aspects of non-ideal characteristics of the data.

Merit

60-69%

Adequate pre-processing to prepare the data for model development.

Pass

50-59%

Some necessary pre-processing is conducted.

Marginal Fail 40-49%

Some basic but omitted necessary pre-processing.

Fail

0-39%

No or very little data pre-processing.

T2-2. Literature review (7.5%)

High Distinction 80%+

Exceptionally well articulated and critical literature review.

Distinction 70-79%

Extensive and critical literature review.

Merit

60-69%

Adequate literature review.

Pass

50-59%

Basic and general literature review.

Marginal Fail 40-49%

Superficial literature review, missed major related work.

Fail

0-39%

No or very little literature review.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图